Skip to main content
Glama

MCP Agent Tracker

by Big0290

MCP Agent Tracker

A Model Context Protocol (MCP) server that automatically tracks client-agent conversations without requiring any user interaction.

Features

🗣️ Automatic Conversation Tracking

  • Zero User Interaction Required: All conversations are tracked automatically
  • Client Request Logging: Every client prompt/request is logged
  • Agent Response Logging: Every agent response is captured
  • Complete Conversation Turns: Full request-response pairs are recorded
  • Session Management: Automatic session creation and tracking

🔧 MCP Tools Available

  • get_current_weather(city): Get weather information for a city
  • agent_interaction(prompt): Interact with the agent
  • get_interaction_history(limit, session_id): Retrieve conversation history
  • get_conversation_summary(session_id): Get conversation statistics and patterns

📊 Automatic Monitoring

  • Background Health Checks: Continuous system monitoring every 5 minutes
  • Automatic Metadata Collection: System info, process details, uptime
  • Error Tracking: Comprehensive error logging and recovery
  • Performance Metrics: Execution times and system health

How It Works

1. Automatic Session Creation

# Sessions are created automatically when the server starts # No user input required logger.get_or_create_session()

2. Client Request Tracking

# Every client request is automatically logged logger.log_client_request(f"Get weather for {city}")

3. Agent Response Tracking

# Every agent response is automatically captured logger.log_agent_response(response)

4. Complete Conversation Logging

# Full conversation turns are recorded logger.log_conversation_turn( client_request=f"Get weather for {city}", agent_response=response )

5. Background Monitoring

# System health is monitored continuously # No user interaction needed def background_monitoring(): while True: logger.log_interaction(interaction_type='health_check', ...) time.sleep(Config.MONITORING_INTERVAL_SECONDS)

Configuration

Environment Variables

# Enable/disable features ENABLE_BACKGROUND_MONITORING=true MONITORING_INTERVAL_SECONDS=300 ENABLE_AUTOMATIC_METADATA=true # Database and logging DATABASE_URL= DB_PATH=./data/agent_tracker.db LOG_LEVEL=INFO

Configuration Options

  • ENABLE_BACKGROUND_MONITORING: Enable continuous system monitoring
  • MONITORING_INTERVAL_SECONDS: How often to run health checks (default: 300s)
  • ENABLE_AUTOMATIC_METADATA: Collect system info automatically

Database Schema

AgentInteraction Table

CREATE TABLE agent_interactions ( id INTEGER PRIMARY KEY, timestamp TIMESTAMP, session_id VARCHAR(255), user_id VARCHAR(255), interaction_type VARCHAR(100), -- 'client_request', 'agent_response', 'conversation_turn' prompt TEXT, -- Client request response TEXT, -- Agent response status VARCHAR(50), error_message TEXT, meta_data JSON -- Automatic system metadata );

Session Table

CREATE TABLE sessions ( id VARCHAR(255) PRIMARY KEY, user_id VARCHAR(255), started_at TIMESTAMP, last_activity TIMESTAMP, total_interactions INTEGER, meta_data JSON );

Usage Examples

Basic Conversation Tracking

@mcp.tool() def my_tool(prompt: str) -> str: # Client request is automatically logged logger.log_client_request(prompt) # Process the request response = process_request(prompt) # Agent response is automatically logged logger.log_agent_response(response) # Complete conversation turn is recorded logger.log_conversation_turn(prompt, response) return response

Getting Conversation History

# Get recent conversations history = get_interaction_history(limit=10) # Get conversation summary summary = get_conversation_summary()

Security Features

  • Environment Variables: All configuration via environment variables
  • No Hardcoded Secrets: Secure credential management
  • Isolated Database Schema: Separate schema for tracking data
  • Error Isolation: Logging failures don't break main functionality

Getting Started

  1. Copy environment file:
    cp env.example .env
  2. Configure your environment:
    # Edit .env with your settings ENABLE_BACKGROUND_MONITORING=true MONITORING_INTERVAL_SECONDS=300
  3. Run the server:
    python main.py
  4. Monitor conversations:
    # Use the MCP tools to interact and track conversations

🚀 Using in Cursor

Prerequisites

  • Cursor IDE installed on your system
  • Python 3.8+ with pip/uv package management
  • Git for cloning the repository

Step 1: Setup MCP Server

  1. Clone and navigate to your project:
    cd /path/to/your/mcp/project
  2. Install dependencies:
    # Using pip pip install -r requirements.txt # Or using uv (recommended) uv sync
  3. Configure environment:
    cp env.example .env # Edit .env with your preferred settings

Step 2: Configure Cursor for MCP

  1. Open Cursor Settings:
    • Press Cmd+, (Mac) or Ctrl+, (Windows/Linux)
    • Or go to Cursor → Preferences → Settings
  2. Add MCP Configuration:
    { "mcpServers": { "mcp-project": { "command": "python", "args": ["/absolute/path/to/your/project/main.py"], "env": { "PYTHONPATH": "/absolute/path/to/your/project" } } } }
  3. Alternative: Use relative paths (if Cursor is opened in project directory):
    { "mcpServers": { "mcp-project": { "command": "python", "args": ["./main.py"] } } }

Step 3: Test MCP Integration

  1. Restart Cursor after adding MCP configuration
  2. Open Command Palette (Cmd+Shift+P or Ctrl+Shift+P)
  3. Type "MCP" to see available MCP commands
  4. Test a tool:
    • Use get_current_weather("New York") to test weather functionality
    • Use agent_interaction("Hello, how are you?") to test conversation tracking
    • Use get_system_status() to check system health

Step 4: Use MCP Tools in Cursor

Available Tools
  • get_current_weather(city): Get weather for any city
  • agent_interaction(prompt): Interact with the agent and track conversations
  • get_interaction_history(limit, session_id): View conversation history
  • get_conversation_summary(session_id): Get conversation analytics
  • get_system_status(): Check system health and configuration
  • test_conversation_tracking(message): Test the tracking system
Example Usage in Cursor
  1. Open Command Palette (Cmd+Shift+P)
  2. Type MCP command:
    MCP: mcp-project: get_current_weather
  3. Enter parameters when prompted:
    city: San Francisco
  4. View results in the output panel

Step 5: Monitor and Debug

View Conversation History
# In Cursor terminal or via MCP tools python -c " from main import get_interaction_history print(get_interaction_history(limit=5)) "
Check System Status
# Via MCP tools in Cursor get_system_status()
Test Conversation Tracking
# Via MCP tools in Cursor test_conversation_tracking("Test message from Cursor")

Troubleshooting

Common Issues
  1. "MCP server not found":
    • Check the absolute path in your Cursor settings
    • Ensure the Python path is correct
    • Verify the server is running
  2. "Import errors":
    • Check PYTHONPATH in MCP configuration
    • Ensure all dependencies are installed
    • Verify you're in the correct directory
  3. "Permission denied":
    • Make sure main.py is executable
    • Check file permissions
    • Try running with python3 instead of python
Debug Commands
# Test MCP server directly python main.py # Check dependencies pip list | grep mcp # Verify configuration python -c "from config import Config; print(Config.ENVIRONMENT)"

Advanced Configuration

Custom MCP Server Names
{ "mcpServers": { "my-custom-mcp": { "command": "python", "args": ["./main.py"], "env": { "ENVIRONMENT": "development", "LOG_LEVEL": "DEBUG" } } } }
Multiple MCP Servers
{ "mcpServers": { "mcp-project": { "command": "python", "args": ["./main.py"] }, "another-mcp": { "command": "python", "args": ["./other_mcp.py"] } } }

Benefits in Cursor

Seamless Integration: Use MCP tools directly in your IDE
Real-time Monitoring: Track conversations as you work
Debugging Tools: Built-in testing and monitoring functions
Performance Insights: Monitor system health and usage
Conversation Analytics: Analyze interaction patterns
Zero Configuration: Automatic setup and tracking

Your MCP server will now be fully integrated with Cursor, providing powerful conversation tracking and monitoring capabilities right in your development environment!

What Gets Tracked Automatically

Client Requests: Every prompt, question, or request
Agent Responses: Every response, answer, or action
Conversation Flow: Complete request-response pairs
System Health: Background monitoring and metrics
Error Handling: All errors and exceptions
Session Data: User sessions and activity
Metadata: System info, timestamps, environment

Tool Usage: Internal MCP tool executions are not tracked
User Input: No manual logging required
Configuration: Automatic setup and management

The system is designed to be completely hands-off - once started, it will track all client-agent conversations automatically without any intervention needed.

Related MCP Servers

  • -
    security
    F
    license
    -
    quality
    A centralized server that tracks and manages connected agents, providing a web interface to monitor their status while enabling agent communication through a central point.
    Last updated -
    • Linux
  • A
    security
    A
    license
    A
    quality
    A Model Context Protocol server that enables AI tools to automatically log their activities with detailed metrics like timestamps, token usage, and costs into daily markdown worklog files.
    Last updated -
    1
    1
    MIT License
  • A
    security
    A
    license
    A
    quality
    Provides seamless integration between AI assistants and Prometheus, enabling natural language interactions with your monitoring infrastructure. This server allows for effortless querying, discovery, and analysis of metrics.
    Last updated -
    10
    29
    20
    MIT License
  • A
    security
    F
    license
    A
    quality
    Enables AI assistants to automatically log and manage conversation history with developers in structured markdown format. Provides powerful search and context suggestions to help AI understand project history and maintain continuity across sessions.
    Last updated -
    4
    1

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Big0290/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server