Skip to main content
Glama

MCP Agent Tracker

by Big0290
seamless_integration_demo.py•12.3 kB
#!/usr/bin/env python3 """ Seamless Integration Demo This script demonstrates how to seamlessly integrate the enhanced chat system with your existing workflow, showing the before/after comparison. """ import sys import time from typing import Dict, Any def print_header(title: str): """Print a formatted header.""" print("\n" + "="*70) print(f"šŸš€ {title}") print("="*70) def print_section(title: str): """Print a formatted section.""" print(f"\nšŸ“‹ {title}") print("-" * 50) def print_success(message: str): """Print a success message.""" print(f"āœ… {message}") def print_info(message: str): """Print an info message.""" print(f"ā„¹ļø {message}") def print_warning(message: str): """Print a warning message.""" print(f"āš ļø {message}") def demo_before_after(): """Demonstrate before/after integration.""" print_header("Seamless Integration Demo - Before vs After") print_info("This demo shows how your existing enhanced_chat function works") print_info("and how it seamlessly integrates with semantic capabilities.") # Test message test_message = "How can I improve my MCP conversation system with embeddings?" print_section("BEFORE: Your Existing enhanced_chat Function") try: # Import your existing function from main import enhanced_chat as original_enhanced_chat print_info("Using your existing enhanced_chat function...") start_time = time.time() # Call your existing function original_result = original_enhanced_chat(test_message) processing_time = time.time() - start_time print_success(f"Original function response: {len(original_result)} characters") print_info(f"Processing time: {processing_time*1000:.2f}ms") print_info("Response preview: " + original_result[:100] + "...") except Exception as e: print_warning(f"Original function not available: {e}") original_result = "Original function response placeholder" print_section("AFTER: Enhanced Chat with Semantic Integration") try: # Import the enhanced version from enhanced_chat_integration import enhanced_chat, enhanced_chat_semantic print_info("Using enhanced_chat with semantic integration...") start_time = time.time() # Call enhanced version (backward compatible) enhanced_result = enhanced_chat(test_message) processing_time = time.time() - start_time if isinstance(enhanced_result, dict): print_success(f"Enhanced response: {enhanced_result['status']}") metrics = enhanced_result.get('performance_metrics', {}) print_info(f"Processing time: {metrics.get('processing_time_ms', 0)}ms") print_info(f"Enhancement ratio: {metrics.get('enhancement_ratio', 0):.2f}") print_info(f"Context richness: {metrics.get('context_richness_score', 0):.2f}") # Show semantic insights if enhanced_result.get('semantic_insights'): insights = enhanced_result['semantic_insights'] print_info(f"Semantic insights available: {insights.get('status', 'unknown')}") if insights.get('recommendations'): print_info("Recommendations:") for i, rec in enumerate(insights['recommendations'][:3], 1): print(f" {i}. {rec}") else: print_success(f"Enhanced response: {len(enhanced_result)} characters") print_info(f"Processing time: {processing_time*1000:.2f}ms") except Exception as e: print_warning(f"Enhanced function not available: {e}") print_section("COMPARISON: What Changed") print_info("šŸ” **What You Get Now:**") print(" āœ… Same function call: enhanced_chat('your message')") print(" āœ… Same response format (string) for backward compatibility") print(" āœ… Automatic semantic enhancement when available") print(" āœ… Rich context analysis and insights") print(" āœ… Performance metrics and monitoring") print(" āœ… Graceful fallback if semantic system unavailable") print_info("\nšŸš€ **New Capabilities:**") print(" • enhanced_chat_semantic() - Full semantic control") print(" • get_semantic_insights_quick() - Quick semantic analysis") print(" • get_context_analysis_quick() - Rich context analysis") print(" • get_enhanced_chat_status() - Integration monitoring") print(" • toggle_semantic_enhancement() - Feature control") def demo_usage_patterns(): """Demonstrate different usage patterns.""" print_header("Usage Patterns Demo") test_message = "What are the best practices for MCP conversation systems?" print_section("Pattern 1: Drop-in Replacement") try: from enhanced_chat_integration import enhanced_chat print_info("Simply replace your existing enhanced_chat import:") print(" # Before: from main import enhanced_chat") print(" # After: from enhanced_chat_integration import enhanced_chat") print("\nYour existing code continues to work unchanged!") result = enhanced_chat(test_message) if isinstance(result, str): print_success(f"Response received: {len(result)} characters") else: print_success(f"Enhanced response: {result['status']}") except Exception as e: print_warning(f"Demo failed: {e}") print_section("Pattern 2: Semantic Control") try: from enhanced_chat_integration import enhanced_chat_semantic print_info("Full control over semantic features:") # High precision mode high_precision = enhanced_chat_semantic( test_message, use_semantic_enhancement=True, similarity_threshold=0.9, return_enhanced=True ) if isinstance(high_precision, dict): print_success("High precision mode:") metrics = high_precision.get('performance_metrics', {}) print(f" Processing time: {metrics.get('processing_time_ms', 0)}ms") print(f" Enhancement ratio: {metrics.get('enhancement_ratio', 0):.2f}") # Fast mode (no semantic enhancement) fast_mode = enhanced_chat_semantic( test_message, use_semantic_enhancement=False, return_enhanced=False ) print_success("Fast mode (no semantic enhancement):") print(f" Response length: {len(fast_mode)} characters") except Exception as e: print_warning(f"Demo failed: {e}") print_section("Pattern 3: Quick Semantic Analysis") try: from enhanced_chat_integration import get_semantic_insights_quick, get_context_analysis_quick print_info("Quick semantic analysis without full chat:") # Get semantic insights insights = get_semantic_insights_quick(test_message) if insights.get('status') == 'success': print_success("Semantic insights available") richness = insights.get('context_richness_score', 0) print(f" Context richness: {richness:.2f}") # Get context analysis context = get_context_analysis_quick(test_message) if 'error' not in context: print_success("Context analysis available") recommendations = context.get('bridge_enhancements', {}).get('recommendations', []) if recommendations: print(f" Recommendations: {len(recommendations)} found") except Exception as e: print_warning(f"Demo failed: {e}") def demo_integration_status(): """Demonstrate integration status monitoring.""" print_header("Integration Status Monitoring") try: from enhanced_chat_integration import get_enhanced_chat_status, toggle_semantic_enhancement print_section("Current Integration Status") status = get_enhanced_chat_status() print_info("Integration Status:") print(f" Semantic enhancement: {status['semantic_enhancement_enabled']}") print(f" Integration status: {status['integration_status']}") print(f" Bridge available: {status['bridge_available']}") print(f" Enhanced tools available: {status['enhanced_tools_available']}") print(f" Timestamp: {status['timestamp']}") print_section("Feature Toggle Demo") print_info("You can toggle semantic enhancement on/off:") # Toggle off current_state = toggle_semantic_enhancement(False) print(f" Semantic enhancement: {current_state}") # Toggle on current_state = toggle_semantic_enhancement(True) print(f" Semantic enhancement: {current_state}") # Toggle (flip current state) current_state = toggle_semantic_enhancement() print(f" Semantic enhancement: {current_state}") except Exception as e: print_warning(f"Status monitoring failed: {e}") def demo_migration_strategy(): """Demonstrate migration strategy.""" print_header("Migration Strategy Demo") print_section("Phase 1: Parallel Implementation") print_info("Keep both systems running while testing:") print(""" # Keep existing functionality from main import enhanced_chat as original_enhanced_chat # Test enhanced functionality from enhanced_chat_integration import enhanced_chat as new_enhanced_chat # Use both for comparison original_response = original_enhanced_chat("Test message") enhanced_response = new_enhanced_chat("Test message") """) print_section("Phase 2: Gradual Replacement") print_info("Replace imports with fallback:") print(""" try: # Try enhanced version first from enhanced_chat_integration import enhanced_chat print("Using enhanced chat with semantic capabilities") except ImportError: # Fallback to original from main import enhanced_chat print("Using original enhanced chat") """) print_section("Phase 3: Full Integration") print_info("Use enhanced system exclusively:") print(""" # Full enhanced system from enhanced_chat_integration import ( enhanced_chat, enhanced_chat_semantic, get_semantic_insights_quick, get_context_analysis_quick ) """) def main(): """Main demonstration function.""" print_header("Seamless Integration with Your enhanced_chat Function") print_info("This demo shows how to seamlessly integrate semantic capabilities") print_info("with your existing enhanced_chat function while maintaining full compatibility.") # Run demonstrations demo_before_after() demo_usage_patterns() demo_integration_status() demo_migration_strategy() print_header("Integration Complete! šŸŽ‰") print_success("Your enhanced_chat function now has seamless semantic integration!") print_info("\nšŸ”— **Key Benefits:**") print(" āœ… Zero code changes required for basic usage") print(" āœ… Automatic semantic enhancement when available") print(" āœ… Rich semantic insights and context analysis") print(" āœ… Performance monitoring and optimization") print(" āœ… Easy toggle between enhanced and basic modes") print(" āœ… Graceful fallback for maximum reliability") print_info("\nšŸš€ **Next Steps:**") print(" 1. Test the integration: python enhanced_chat_integration.py") print(" 2. Replace your import: from enhanced_chat_integration import enhanced_chat") print(" 3. Enjoy automatic semantic enhancement!") print(" 4. Explore advanced features as needed") print_info("\nšŸ“š **Documentation:**") print(" • enhanced_chat_integration.py - Main integration module") print(" • INTEGRATION_GUIDE.md - Comprehensive integration guide") print(" • Test files - Examples and usage patterns") if __name__ == "__main__": main()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Big0290/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server