Skip to main content
Glama

MCP Agent Tracker

by Big0290
PROMPT_GENERATOR_README.mdโ€ข11.4 kB
# ๐Ÿš€ Centralized Prompt Generator System ## Overview The **Centralized Prompt Generator System** is a unified, maintainable solution that consolidates all prompt generation logic from various files into one comprehensive system. It provides multiple enhancement strategies, better error handling, and more informative prompts. ## โœจ Key Features ### **๐ŸŽฏ Multiple Enhancement Strategies** - **Comprehensive**: Full context with all available information - **Technical**: Focused on technical details and best practices - **Conversation**: Emphasizes conversation flow and user preferences - **Smart**: Adaptive context based on detected patterns - **Minimal**: Essential context for quick responses ### **๐Ÿ”ง Centralized Architecture** - Single source of truth for all prompt generation - Consistent formatting and structure across all strategies - Easy maintenance and updates - Unified error handling and fallbacks ### **๐Ÿ“Š Performance & Monitoring** - Intelligent caching with configurable TTL - Performance metrics and statistics - Cache hit/miss tracking - Generation time monitoring ### **๐Ÿ”„ Fallback Support** - Graceful degradation when dependencies fail - Maintains backward compatibility - Original implementations as fallbacks ## ๐Ÿ—๏ธ Architecture ``` โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Prompt Generator โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ Comprehensive โ”‚ โ”‚ Technical โ”‚ โ”‚ Conversationโ”‚ โ”‚ โ”‚ โ”‚ Strategy โ”‚ โ”‚ Strategy โ”‚ โ”‚ Strategy โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ Smart โ”‚ โ”‚ Minimal โ”‚ โ”‚ โ”‚ โ”‚ Strategy โ”‚ โ”‚ Strategy โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ–ผ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Context Cache โ”‚ โ”‚ (5 min TTL) โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ–ผ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Context Data โ”‚ โ”‚ Gathering โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ``` ## ๐Ÿš€ Usage ### **Basic Usage** ```python from prompt_generator import prompt_generator # Generate comprehensive enhanced prompt enhanced = prompt_generator.generate_enhanced_prompt( user_message="How do I set up the database?", context_type="comprehensive" ) # Generate technical-focused prompt technical = prompt_generator.generate_enhanced_prompt( user_message="What's the best way to optimize this query?", context_type="technical" ) ``` ### **Convenience Functions** ```python from prompt_generator import ( generate_comprehensive_prompt, generate_technical_prompt, generate_conversation_prompt, generate_smart_prompt, generate_minimal_prompt ) # Quick access to different strategies comprehensive = generate_comprehensive_prompt("Your message here") technical = generate_technical_prompt("Your message here") ``` ### **Advanced Usage** ```python # Force refresh context (ignore cache) enhanced = prompt_generator.generate_enhanced_prompt( user_message="Your message", context_type="comprehensive", force_refresh=True ) # Get statistics stats = prompt_generator.get_stats() print(f"Success rate: {stats['success_rate']}") print(f"Cache hit rate: {stats['cache_hit_rate']}") # Clear cache prompt_generator.clear_cache() ``` ## ๐Ÿ”„ Integration ### **Updated Files** The following files now use the centralized prompt generator: 1. **`main.py`** - Main agent interaction function 2. **`smart_context_injector.py`** - Smart context injection 3. **`auto_context_wrapper.py`** - Auto context enhancement 4. **`local_mcp_server_simple.py`** - Local MCP server 5. **`cursor_agent_integration.py`** - Cursor integration ### **Fallback Behavior** Each integration includes fallback logic: ```python try: # Use centralized prompt generator from prompt_generator import prompt_generator enhanced = prompt_generator.generate_enhanced_prompt(message, "comprehensive") except ImportError: # Fallback to original implementation enhanced = original_prompt_generation(message) ``` ## ๐Ÿ“Š Enhanced Prompt Structure ### **Comprehensive Strategy Example** ``` === ๐Ÿš€ COMPREHENSIVE ENHANCED PROMPT === USER MESSAGE: How do I set up the database? === ๐Ÿ“Š CONTEXT INJECTION === ๐ŸŽฏ CONVERSATION SUMMARY: Current conversation state: 15 total interactions... ๐Ÿ“ ACTION HISTORY: Recent actions: Database configuration, MCP server setup... โš™๏ธ TECH STACK: Python 3.x, SQLite database, MCP (Model Context Protocol)... ๐ŸŽฏ PROJECT PLANS & OBJECTIVES: 1. Build powerful conversation tracking system โœ… 2. Implement centralized prompt generation โœ… 3. Create comprehensive context injection... ๐Ÿ‘ค USER PREFERENCES: โ€ข Database Choice: SQLite over PostgreSQL โ€ข Communication Style: Technical but friendly โ€ข Tool Preferences: Built-in tools over external APIs ๐Ÿค– AGENT METADATA: Friendly name: Johny, Agent ID: mcp-project-001... ๐Ÿ” PROJECT PATTERNS: โ€ข Python development best practices โ€ข SQLite database patterns โ€ข Model Context Protocol integration โœ… BEST PRACTICES: โ€ข Follow DRY (Don't Repeat Yourself) principle โ€ข Implement proper error handling and logging โ€ข Write comprehensive tests for critical functionality โš ๏ธ COMMON ISSUES & SOLUTIONS: โ€ข Configuration and environment setup โ€ข Dependency management and version conflicts โ€ข Performance bottlenecks and optimization ๐Ÿ”„ DEVELOPMENT WORKFLOW: โ€ข Analyze requirements and context โ€ข Design comprehensive solution โ€ข Implement with best practices โ€ข Test and validate โ€ข Deploy and monitor โ€ข Maintain conversation continuity ๐Ÿ“ˆ CONTEXT CONFIDENCE: 95.0% === ๐ŸŽฏ INSTRUCTIONS === Please respond to the user's message above, taking into account: 1. ๐Ÿ“š The current conversation context and recent interactions 2. ๐ŸŽฏ The specific actions and steps taken so far 3. โš™๏ธ The technical stack and capabilities available 4. ๐ŸŽฏ The project goals and objectives 5. ๐Ÿ‘ค The user's stated preferences and requirements 6. ๐Ÿค– The agent's capabilities and current state 7. ๐Ÿ” Project-specific patterns and best practices 8. โš ๏ธ Common issues and solutions for this context 9. ๐Ÿ”„ Recommended development workflow 10. ๐Ÿ“Š The confidence level of available context Provide a comprehensive, context-aware response that: โ€ข Builds upon our conversation history โ€ข Leverages project-specific knowledge โ€ข Addresses the user's preferences โ€ข Suggests actionable next steps โ€ข References relevant technical details โ€ข Maintains conversation continuity === ๐Ÿš€ END ENHANCED PROMPT === ``` ## ๐Ÿงช Testing ### **Run Tests** ```bash python test_prompt_generator.py ``` ### **Test Coverage** - โœ… All enhancement strategies - โœ… Convenience functions - โœ… Fallback behavior - โœ… Performance monitoring - โœ… Cache functionality - โœ… Error handling ## ๐Ÿ“ˆ Performance Metrics ### **Monitoring** The system tracks: - Total prompts generated - Success/failure rates - Average generation time - Cache hit/miss rates - Context confidence scores ### **Optimization** - 5-minute cache TTL for context data - Intelligent cache size management - Performance tracking for optimization - Fallback strategies for reliability ## ๐Ÿ”ง Configuration ### **Cache Settings** ```python # Cache TTL (5 minutes) CACHE_TTL_SECONDS = 300 # Maximum cache size MAX_CACHE_SIZE = 100 # Cache cleanup threshold CACHE_CLEANUP_THRESHOLD = 20 ``` ### **Enhancement Strategies** ```python ENHANCEMENT_STRATEGIES = { 'comprehensive': _generate_comprehensive_prompt, 'technical': _generate_technical_prompt, 'conversation': _generate_conversation_prompt, 'smart': _generate_smart_prompt, 'minimal': _generate_minimal_prompt } ``` ## ๐Ÿš€ Benefits ### **For Developers** - **Maintainability**: Single file to update prompt logic - **Consistency**: Uniform prompt structure across all strategies - **Debugging**: Centralized error handling and logging - **Testing**: Easy to test all prompt generation logic ### **For Users** - **Better Context**: More informative and structured prompts - **Faster Responses**: Intelligent caching reduces generation time - **Reliability**: Fallback strategies ensure system availability - **Flexibility**: Multiple enhancement strategies for different needs ### **For System** - **Performance**: Optimized caching and monitoring - **Scalability**: Easy to add new enhancement strategies - **Monitoring**: Comprehensive performance metrics - **Stability**: Robust error handling and fallbacks ## ๐Ÿ”ฎ Future Enhancements ### **Planned Features** - Machine learning-based context optimization - Dynamic strategy selection based on user patterns - Integration with external knowledge bases - Real-time context adaptation ### **Extensibility** - Plugin system for custom enhancement strategies - Configurable prompt templates - Multi-language support - Advanced caching strategies ## ๐Ÿ“š API Reference ### **PromptGenerator Class** #### **Methods** - `generate_enhanced_prompt(user_message, context_type, force_refresh)` - `get_stats()` - `clear_cache()` - `get_available_strategies()` #### **Properties** - `enhancement_stats`: Performance metrics - `context_cache`: Cached prompt results - `enhancement_strategies`: Available strategies ### **Convenience Functions** - `generate_comprehensive_prompt(user_message)` - `generate_technical_prompt(user_message)` - `generate_conversation_prompt(user_message)` - `generate_smart_prompt(user_message)` - `generate_minimal_prompt(user_message)` ## ๐ŸŽ‰ Conclusion The Centralized Prompt Generator System represents a significant improvement in the MCP Conversation Intelligence System: - **๐ŸŽฏ Unified**: All prompt generation logic in one place - **๐Ÿš€ Enhanced**: More informative and structured prompts - **๐Ÿ”ง Maintainable**: Easy to update and extend - **๐Ÿ“Š Monitored**: Performance tracking and optimization - **๐Ÿ”„ Reliable**: Robust fallback strategies This system provides a solid foundation for future enhancements while maintaining backward compatibility and improving the overall user experience.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Big0290/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server