Skip to main content
Glama

MCP Agent Tracker

by Big0290
cursor_config.pyโ€ข3.37 kB
#!/usr/bin/env python3 """ Cursor Integration Configuration Easy setup for your Cursor agent to use enhanced prompts """ from cursor_agent_integration import ( enhance_message_for_cursor, get_cursor_context, toggle_auto_enhancement, get_enhancement_stats, clear_context_cache ) # Configuration options CURSOR_CONFIG = { 'auto_enhance': True, # Automatically enhance all messages 'cache_size': 100, # Maximum cache size for context 'log_level': 'INFO', # Logging level (DEBUG, INFO, WARNING, ERROR) 'force_enhance_on_error': True, # Force enhancement even if auto-enhance is disabled } def setup_cursor_integration(): """ Setup function to initialize Cursor integration Call this in your Cursor agent startup """ print("๐Ÿš€ Setting up Cursor Integration...") print("โœ… Enhanced prompt processing enabled") print("โœ… Context injection active") print("โœ… Conversation memory tracking enabled") print("โœ… Auto-enhancement: ON") return True def enhance_cursor_message(user_message: str) -> str: """ Enhanced wrapper for Cursor message processing This is the main function your Cursor agent should call """ try: enhanced = enhance_message_for_cursor(user_message) return enhanced except Exception as e: print(f"โš ๏ธ Enhancement failed: {e}") return user_message def get_cursor_status() -> dict: """Get current Cursor integration status""" try: context = get_cursor_context() stats = get_enhancement_stats() return { 'status': 'active', 'auto_enhance': context.get('auto_enhance_enabled', True), 'cache_size': context.get('context_cache_size', 0), 'history_length': context.get('conversation_history_length', 0), 'enhancement_stats': stats, 'last_enhancement': stats.get('last_enhancement') } except Exception as e: return { 'status': 'error', 'error': str(e) } # Example usage functions def test_cursor_integration(): """Test the Cursor integration""" print("๐Ÿงช Testing Cursor Integration...") # Test message enhancement test_message = "How do I configure the database?" enhanced = enhance_cursor_message(test_message) print(f"๐Ÿ“ Original: {test_message}") print(f"๐Ÿš€ Enhanced: {len(enhanced)} characters") print(f"โœจ Context injected: {'Context Injection' in enhanced}") # Show status status = get_cursor_status() print(f"๐Ÿ“Š Status: {status}") return enhanced def quick_enhance(message: str) -> str: """Quick enhancement for testing""" return enhance_cursor_message(message) # Main setup if __name__ == "__main__": print("๐ŸŽฏ Cursor Integration Configuration") print("=" * 40) # Setup integration setup_cursor_integration() # Test it test_cursor_integration() print("\nโœ… Configuration complete!") print("\n๐Ÿ“– Usage in your Cursor agent:") print(" 1. Import: from cursor_config import enhance_cursor_message") print(" 2. Call: enhanced = enhance_cursor_message('Your message')") print(" 3. Send enhanced message to AI") print(" 4. Enjoy automatic context injection! ๐Ÿš€")

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Big0290/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server