Skip to main content
Glama

AI Conversation Logger

by fablefang

AI Conversation Logger MCP

中文版 | 日本語版

An intelligent MCP (Model Context Protocol) server designed specifically for AI assistants to automatically log and manage conversation history with developers.

🎯 Core Features

  • 🤖 AI-Driven Logging - All content is determined and provided by the AI assistant
  • 📝 Pure Save Mode - MCP only formats and stores, no content extraction or analysis
  • 🔄 Designed for AI Retrospection - Log format optimized for AI to quickly understand project history
  • 🏷️ Smart Organization - Auto-organize by project and date with tagging support
  • 🔍 Powerful Search - Multi-dimensional search by keywords, files, tags, and time range
  • 📊 Context Suggestions - Smart recommendations based on file associations

🚀 Quick Start

1. Install Dependencies

npm install

2. Build Project

npm run build

3. Configure Claude Code

Add MCP server configuration to Claude Code's config file (~/.claude.json):

{ "mcpServers": { "conversation-logger": { "command": "node", "args": ["/path/to/ai-conversation-logger-mcp/dist/index.js"] } } }

4. Restart Claude Code

Restart Claude Code to apply the configuration.

📚 API Tools

1. log_conversation - Core Logging Tool

Records every AI-user interaction with structured information:

interface LogConversationParams { userRequest: string; // User's original request + uploaded file descriptions aiTodoList: string[]; // AI's execution plan (list even for view-only tasks) aiSummary: string; // AI's operation summary (3-5 sentences) fileOperations?: string[]; // File operations in format: "action filepath - description" title?: string; // Conversation title (optional) tags?: string[]; // Tag array (optional) project?: string; // Project name (auto-detected if not provided) }

2. search_conversations - Search Tool

Search through conversation history with multiple filters:

interface SearchParams { keywords?: string[]; // Keyword search filePattern?: string; // File name pattern search days?: number; // Recent N days project?: string; // Project filter (defaults to current) tags?: string[]; // Tag filter limit?: number; // Result limit (default: 10) }

3. get_context_suggestions - Context Recommendations

Get relevant historical context based on current work:

interface ContextParams { currentInput: string; // Current user input currentFiles?: string[]; // Currently involved files project?: string; // Project filter (optional) }

📁 Storage Structure

Logs are stored in the project's ai-logs/ directory:

project-root/ ├── ai-logs/ │ ├── 2025-08-07.md # Daily conversation logs │ ├── 2025-08-06.md │ └── config.json # Project configuration ├── src/ └── ...

📝 Log Format

Each conversation is recorded with the following structure:

## [Timestamp] Title #tags ### 🗣️ User Request [Original user request] ### 📋 AI Execution Plan - [x] Completed task - [ ] Pending task ### 🤖 AI Summary [Summary of what was accomplished] ### 📂 File Operations - **Created** `path/to/file` - Purpose description - **Modified** `path/to/file` - What was changed - **Deleted** `path/to/file` - Reason for deletion ### 🏷️ Tags #module #technology #type

🎯 Usage Principles

When to Log

All conversations should be logged, including:

  • New feature development
  • Bug fixes (any size)
  • Code refactoring
  • Configuration changes
  • Code explanations and analysis
  • Technical Q&A
  • Code reviews
  • Any project-related dialogue

Key Points

  1. AI-Driven Content - AI determines what information to log
  2. Complete Context - Include all relevant details for future reference
  3. Focus on "What" not "How" - Emphasize functionality over technical details
  4. Consistent Format - Maintain standardized markdown structure

🛠️ Development

Development Mode

npm run dev

Run Tests

npm test

Code Linting

npm run lint npm run lint:fix

TypeScript Check

npm run type-check

🔧 Technical Stack

  • TypeScript - Type-safe development
  • MCP SDK - Model Context Protocol implementation
  • Node.js - Runtime environment
  • Jest - Testing framework

📄 License

MIT

🤝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

📮 Contact

For issues or suggestions, please open an issue on GitHub.

Install Server
A
security – no known vulnerabilities
F
license - not found
A
quality - confirmed to work

hybrid server

The server is able to function both locally and remotely, depending on the configuration or use case.

Enables AI assistants to automatically log and manage conversation history with developers in structured markdown format. Provides powerful search and context suggestions to help AI understand project history and maintain continuity across sessions.

  1. 🎯 Core Features
    1. 🚀 Quick Start
      1. 1. Install Dependencies
      2. 2. Build Project
      3. 3. Configure Claude Code
      4. 4. Restart Claude Code
    2. 📚 API Tools
      1. 1. log_conversation - Core Logging Tool
      2. 2. search_conversations - Search Tool
      3. 3. get_context_suggestions - Context Recommendations
    3. 📁 Storage Structure
      1. 📝 Log Format
        1. 🎯 Usage Principles
          1. When to Log
          2. Key Points
        2. 🛠️ Development
          1. Development Mode
          2. Run Tests
          3. Code Linting
          4. TypeScript Check
        3. 🔧 Technical Stack
          1. 📄 License
            1. 🤝 Contributing
              1. 📮 Contact

                Related MCP Servers

                • A
                  security
                  A
                  license
                  A
                  quality
                  A tool that preserves chat history as Markdown files, automatically adding timestamps and supporting conversation identification through session IDs.
                  Last updated -
                  1
                  4
                  Python
                  MIT License
                  • Apple
                  • Linux
                • A
                  security
                  A
                  license
                  A
                  quality
                  Provides a structured documentation system for context preservation in AI assistant environments, helping users create and manage memory banks for their projects.
                  Last updated -
                  3
                  66
                  Python
                  MIT License
                  • Linux
                  • Apple
                • A
                  security
                  A
                  license
                  A
                  quality
                  Enables AI assistants to maintain persistent project context across sessions by storing and retrieving structured information in markdown files organized in a memory bank directory.
                  Last updated -
                  4
                  53
                  JavaScript
                  Apache 2.0
                  • Linux
                  • Apple
                • A
                  security
                  A
                  license
                  A
                  quality
                  Provides intelligent context management for AI development sessions, allowing users to track token usage, manage conversation context, and seamlessly restore context when reaching token limits.
                  Last updated -
                  8
                  3
                  2
                  TypeScript
                  Apache 2.0
                  • Linux
                  • Apple

                View all related MCP servers

                MCP directory API

                We provide all the information about MCP servers via our MCP API.

                curl -X GET 'https://glama.ai/api/mcp/v1/servers/fablefang/ai-conversation-logger-mcp'

                If you have feedback or need assistance with the MCP directory API, please join our Discord server