Skip to main content
Glama

Pendle Finance MCP Server

by maneesha029

Pendle Finance FastMCP Server 🚀

Python FastAPI

This repository contains a Model Context Protocol (MCP) Server built with FastMCP in Python.
It connects to Pendle Finance DeFi Protocol and exposes endpoints for AI agents or clients like MCP Inspector.

Features include:

  • Fetching live yields from Pendle API

  • Simulating staking and swaps

  • Retrieving user DeFi portfolio

  • AI-based token recommendations (simulated)

  • AI future yield predictions (simulated)

âš™ Setup and Installation

  1. Prerequisites

Python 3.10+ installed on your system

Node.js 16+ if you want to use MCP Inspector

  1. Clone This Repo

git clone https://github.com/maneesa029/Pendle_mcp cd Pendle_mcp

  1. Create and Activate a Virtual Environment

Create virtual environment

python -m venv venv

Windows

.\venv\Scripts\activate

macOS/Linux

source venv/bin/activate

  1. Install Dependencies

pip install -r requirements.txt

  1. Configure .env

Create a .env file in the root folder and add your configuration:

FastAPI settings

FASTAPI_ENV=development HOST=127.0.0.1 PORT=8000

Pendle API (no secret key needed for public endpoints)

PENDLE_API_URL=https://api.pendle.finance/v1/yields

Ethereum testnet (if using staking simulation or swaps)

RPC_URL=https://sepolia.infura.io/v3/YOUR_INFURA_KEY PRIVATE_KEY=0xYOUR_TEST_PRIVATE_KEY

âš  Security Warning: Do NOT use your main wallet private key with real funds. Always use a testnet key or a small segregated account for testing.


🔬 Running and Monitoring the Server

  1. Start the Pendle MCP Server

uvicorn server:app --reload --port 8000

You should see:

INFO: Uvicorn running on http://127.0.0.1:8000 INFO: Application startup complete.

  1. Open MCP Inspector (Optional)

If you want to test tools interactively:

npx @modelcontextprotocol/inspector

This will launch a local URL (e.g., http://127.0.0.1:6274)

Open the URL in your browser

In Tools tab, you’ll see all exposed Pendle MCP functions:

get_yield → fetch top yields

stake → simulate staking

swap → simulate swap

portfolio → user portfolio

predict_best_token → AI-recommended token

predict_future → future yield prediction


✅ 3. Test via Python Client

test_client.py

import requests

BASE = "http://127.0.0.1:8000"

print(requests.get(f"{BASE}/get_yield").json()) print(requests.post(f"{BASE}/stake", json={"user_address":"0x123","token":"PENDLE","amount":10}).json()) print(requests.get(f"{BASE}/predict_best_token").json())


🔹 Features

Fetch live Pendle yields from API

Simulate staking and swaps

Retrieve user DeFi portfolio

AI predicts best token to stake

AI predicts future yields for N days

Works seamlessly with MCP Inspector or any AI agent


🔹 Optional AI Improvements

Replace random predictions with historical yield ML model (scikit-learn / Prophet)

Include portfolio optimization for multiple tokens

Connect Ethereum testnet to simulate real transactions

-
security - not tested
F
license - not found
-
quality - not tested

hybrid server

The server is able to function both locally and remotely, depending on the configuration or use case.

Enables interaction with Pendle Finance DeFi protocol to fetch live yields, simulate staking and swaps, retrieve portfolio data, and get AI-based token recommendations. Provides comprehensive DeFi portfolio management and yield optimization through natural language.

  1. Windows
    1. macOS/Linux
      1. FastAPI settings
        1. Pendle API (no secret key needed for public endpoints)
          1. Ethereum testnet (if using staking simulation or swaps)
            1. test_client.py

              MCP directory API

              We provide all the information about MCP servers via our MCP API.

              curl -X GET 'https://glama.ai/api/mcp/v1/servers/maneesha029/Pendle_mcp'

              If you have feedback or need assistance with the MCP directory API, please join our Discord server