Skip to main content
Glama
README.md•3.07 kB
Pendle Finance FastMCP Server 🚀 ![Python](https://img.shields.io/badge/python-3.10+-blue) ![FastAPI](https://img.shields.io/badge/FastAPI-v0.100.0-green) This repository contains a *Model Context Protocol (MCP) Server* built with *FastMCP* in Python. It connects to *Pendle Finance* DeFi Protocol and exposes endpoints for AI agents or clients like *MCP Inspector*. Features include: - Fetching live yields from Pendle API - Simulating staking and swaps - Retrieving user DeFi portfolio - AI-based token recommendations (simulated) - AI future yield predictions (simulated) ⚙ Setup and Installation 1. Prerequisites Python 3.10+ installed on your system Node.js 16+ if you want to use MCP Inspector 2. Clone This Repo git clone https://github.com/maneesa029/Pendle_mcp cd Pendle_mcp 3. Create and Activate a Virtual Environment # Create virtual environment python -m venv venv # Windows .\venv\Scripts\activate # macOS/Linux source venv/bin/activate 4. Install Dependencies pip install -r requirements.txt 5. Configure .env Create a .env file in the root folder and add your configuration: # FastAPI settings FASTAPI_ENV=development HOST=127.0.0.1 PORT=8000 # Pendle API (no secret key needed for public endpoints) PENDLE_API_URL=https://api.pendle.finance/v1/yields # Ethereum testnet (if using staking simulation or swaps) RPC_URL=https://sepolia.infura.io/v3/YOUR_INFURA_KEY PRIVATE_KEY=0xYOUR_TEST_PRIVATE_KEY ⚠ Security Warning: Do NOT use your main wallet private key with real funds. Always use a testnet key or a small segregated account for testing. --- 🔬 Running and Monitoring the Server 1. Start the Pendle MCP Server uvicorn server:app --reload --port 8000 You should see: INFO: Uvicorn running on http://127.0.0.1:8000 INFO: Application startup complete. 2. Open MCP Inspector (Optional) If you want to test tools interactively: npx @modelcontextprotocol/inspector This will launch a local URL (e.g., http://127.0.0.1:6274) Open the URL in your browser In Tools tab, you’ll see all exposed Pendle MCP functions: get_yield → fetch top yields stake → simulate staking swap → simulate swap portfolio → user portfolio predict_best_token → AI-recommended token predict_future → future yield prediction --- ✅ 3. Test via Python Client # test_client.py import requests BASE = "http://127.0.0.1:8000" print(requests.get(f"{BASE}/get_yield").json()) print(requests.post(f"{BASE}/stake", json={"user_address":"0x123","token":"PENDLE","amount":10}).json()) print(requests.get(f"{BASE}/predict_best_token").json()) --- 🔹 Features Fetch live Pendle yields from API Simulate staking and swaps Retrieve user DeFi portfolio AI predicts best token to stake AI predicts future yields for N days Works seamlessly with MCP Inspector or any AI agent --- 🔹 Optional AI Improvements Replace random predictions with historical yield ML model (scikit-learn / Prophet) Include portfolio optimization for multiple tokens Connect Ethereum testnet to simulate real transactions

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/maneesha029/Pendle_mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server