Skip to main content
Glama

cognee-mcp

multimedia_example.py1.67 kB
import os import asyncio import pathlib from cognee.shared.logging_utils import setup_logging, ERROR import cognee from cognee.api.v1.search import SearchType # Prerequisites: # 1. Copy `.env.template` and rename it to `.env`. # 2. Add your OpenAI API key to the `.env` file in the `LLM_API_KEY` field: # LLM_API_KEY = "your_key_here" async def main(): # Create a clean slate for cognee -- reset data and system state await cognee.prune.prune_data() await cognee.prune.prune_system(metadata=True) # cognee knowledge graph will be created based on the text # and description of these files mp3_file_path = os.path.join( pathlib.Path(__file__).parent.parent.parent, "examples/data/multimedia/text_to_speech.mp3", ) png_file_path = os.path.join( pathlib.Path(__file__).parent.parent.parent, "examples/data/multimedia/example.png", ) # Add the files, and make it available for cognify await cognee.add([mp3_file_path, png_file_path]) # Use LLMs and cognee to create knowledge graph await cognee.cognify() # Query cognee for summaries of the data in the multimedia files search_results = await cognee.search( query_type=SearchType.SUMMARIES, query_text="What is in the multimedia files?", ) # Display search results for result_text in search_results: print(result_text) if __name__ == "__main__": logger = setup_logging(log_level=ERROR) loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) try: loop.run_until_complete(main()) finally: loop.run_until_complete(loop.shutdown_asyncgens())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/topoteretes/cognee'

If you have feedback or need assistance with the MCP directory API, please join our Discord server