Skip to main content
Glama

cognee-mcp

code_graph_example.py1.74 kB
import argparse import asyncio import cognee from cognee import SearchType from cognee.shared.logging_utils import setup_logging, ERROR from cognee.api.v1.cognify.code_graph_pipeline import run_code_graph_pipeline async def main(repo_path, include_docs): run_status = False async for run_status in run_code_graph_pipeline(repo_path, include_docs=include_docs): run_status = run_status # Test CODE search search_results = await cognee.search(query_type=SearchType.CODE, query_text="test") assert len(search_results) != 0, "The search results list is empty." print("\n\nSearch results are:\n") for result in search_results: print(f"{result}\n") return run_status def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--repo_path", type=str, required=True, help="Path to the repository") parser.add_argument( "--include_docs", type=lambda x: x.lower() in ("true", "1"), default=False, help="Whether or not to process non-code files", ) parser.add_argument( "--time", type=lambda x: x.lower() in ("true", "1"), default=True, help="Whether or not to time the pipeline run", ) return parser.parse_args() if __name__ == "__main__": logger = setup_logging(log_level=ERROR) args = parse_args() if args.time: import time start_time = time.time() asyncio.run(main(args.repo_path, args.include_docs)) end_time = time.time() print("\n" + "=" * 50) print(f"Pipeline Execution Time: {end_time - start_time:.2f} seconds") print("=" * 50 + "\n") else: asyncio.run(main(args.repo_path, args.include_docs))

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/topoteretes/cognee'

If you have feedback or need assistance with the MCP directory API, please join our Discord server