remote-capable server
The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.
RandomWeb3MCP - Web3 Random Element Generation Service
RandomWeb3MCP is a random element generation service based on EVM block hash. The service provides various random element generation tools that can be used in games, finance, testing, and other fields.
Features
- Verifiability: All random numbers are generated based on blockchain hash, ensuring fairness and verifiability
- Diversity: Supports various random number generation scenarios, from basic random numbers to complex probability distributions
- Reliability: Uses blockchain as entropy source to ensure randomness quality
- Usability: Provides simple and intuitive API interfaces for easy integration
Installation
Quick Start
Configuration in tico or Cursor
Add random-web3-mcp service configuration in Cursor settings:
Tool List
generate_basic_random
Name
Basic Random Number Generator
Function
Generate a random integer within the specified range
Parameters
- min_value (int, optional): Minimum value (inclusive). Defaults to 0.
- max_value (int, optional): Maximum value (inclusive). Defaults to 1000000.
- salt (str, optional): Random number salt value for increased randomness. Defaults to ''
Returns
JSON string containing the random number result
Application Scenarios
- Lottery systems
- Game random numbers
- Random ID generation
- Test data generation
generate_random_array
Name
Random Array Generator
Function
Generate a random array of specified length
Parameters
- array_length (int, optional): Array length. Defaults to 1.
- min_value (int, optional): Minimum value. Defaults to 0.
- max_value (int, optional): Maximum value. Defaults to 1000000.
- salt (str, optional): Random number salt value. Defaults to ''
Returns
JSON string containing the random array
Application Scenarios
- Batch random number generation
- Random sampling
- Test dataset generation
- Random task assignment
generate_random_weighted
Name
Weighted Random Selector
Function
Randomly select an option based on weights
Parameters
- options (List[str]): List of options
- weights (List[int]): Corresponding weight list (0-1000)
- salt (str, optional): Random number salt value. Defaults to ''
Returns
JSON string containing the selection result
Application Scenarios
- Lottery systems (prizes with different probabilities)
- Random drops (weighted item drops)
- Task assignment (based on priority)
- A/B testing (experiment groups with different ratios)
generate_random_feature
Name
Random Feature Allocator
Function
Generate a set of random feature values for objects, each feature value within its specified range. Feature values are encoded into a bitmap, with each feature occupying 8 bits
Parameters
- feature_count (int): Number of features to generate
- feature_max_values (List[int]): List of maximum values for each feature, length must equal feature_count
- salt (str, optional): Random number salt value for increased randomness. Defaults to ''
Returns
JSON string containing feature values and bitmap, formatted as:
Application Scenarios
- Game character attribute generation (strength, agility, intelligence, etc.)
- Equipment attribute randomization (attack, defense, speed, etc.)
- Biological trait simulation (genes, traits, etc.)
- Random scene generation (terrain, weather, environment, etc.)
generate_distribution
Name
Probability Distribution Random Generator
Function
Generate random numbers according to specified probability distribution type and parameters. Supports various common probability distributions.
Parameters
- distribution_type (int): Distribution type:
- 1 = Uniform distribution (parameters: [min_value, max_value])
- 2 = Normal distribution (parameters: [mean, standard_deviation])
- 3 = Exponential distribution (parameters: [scale_parameter])
- 4 = Binomial distribution (parameters: [trials, success_probability])
- distribution_parameters (List[float]): Distribution parameter list
- salt (str, optional): Random number salt value for increased randomness. Defaults to ''
Returns
JSON string containing random value and distribution information, formatted as:
Application Scenarios
- Financial market simulation (return distribution, risk analysis)
- Natural phenomena simulation (particle distribution, noise generation)
- Load testing (user behavior distribution)
- Statistical sampling (experimental data generation)
generate_random_event
Name
Random Event Trigger
Function
Trigger a series of events based on given probabilities, each event has an independent trigger probability. Uses bitmap to record trigger status for easy processing.
Parameters
- event_count (int): Total number of events
- event_probabilities (List[int]): Trigger probability for each event (0-1000, representing 0-100%)
- salt (str, optional): Random number salt value for increased randomness. Defaults to ''
Returns
JSON string containing event trigger results, formatted as:
Application Scenarios
- Game random events (trigger plot, drop items)
- Probability effect determination (skill trigger, combo determination)
- Risk event simulation (fault prediction, accident events)
- Multiple condition determination (combined probability events)
generate_random_seed
Name
Random Seed Generator
Function
Generate high-entropy random seed for encryption or other scenarios requiring high-quality random numbers. Uses blockchain hash as entropy source to ensure randomness.
Parameters
- seed_length (int): Length of seed to generate (in bytes)
- salt (str, optional): Random number salt value for increased randomness. Defaults to ''
Returns
JSON string containing random seed, formatted as:
Application Scenarios
- Key generation (encryption keys, signature seeds)
- Security tokens (session identifiers, authentication tokens)
- Random number initialization (PRNG seeds, simulation initial states)
- Unique identifier generation (UUID seeds, random identifiers)
shuffle_array
Name
Random Array Shuffler
Function
Randomly shuffle the input array, ensuring each element has an equal probability of appearing in any position. Uses Fisher-Yates shuffle algorithm to ensure fairness.
Parameters
- input_array (List): Array to be shuffled, elements can be of any type
- salt (str, optional): Random number salt value for increased randomness. Defaults to ''
Returns
JSON string containing the shuffled array, formatted as:
Application Scenarios
- Game shuffling (playing cards, mahjong tiles)
- Random ordering (question order, playlist)
- Random grouping (team assignment, experiment grouping)
- Data shuffling (training dataset, test cases)
generate_coordinate
Name
Random Coordinate Generator
Function
Generate random coordinate points in a specified dimensional space, each dimension has its own value range. Supports coordinate generation in any number of dimensions.
Parameters
- dimensions (int): Number of coordinate dimensions (1D, 2D, 3D, etc.)
- min_values (List[float]): List of minimum values for each dimension
- max_values (List[float]): List of maximum values for each dimension
- coordinate_count (int): Number of coordinate points to generate
- salt (str, optional): Random number salt value for increased randomness. Defaults to ''
Returns
JSON string containing random coordinates, formatted as:
Application Scenarios
- Game object positioning (NPC locations, item distribution)
- Particle systems (effect generation, particle distribution)
- Map generation (terrain height, resource distribution)
- Spatial sampling (3D modeling, spatial analysis)
generate_rarity
Name
Rarity Random Allocator
Function
Generate random coordinate points in a specified dimensional space, each dimension has its own value range. Supports coordinate generation in any number of dimensions.
Parameters
- item_count: Project quantity
- rarity_tiers: Rarity level array
- rarity_percentages: Probability percentage for each rarity level
- guaranteed_minimums: Guaranteed quantity for each rarity level (optional)
- salt (str, optional): Random number salt value for increased randomness. Defaults to ''
Returns
JSON string containing random rarity array, formatted as:
Application Scenarios
- Game item drops (different rarity equipment, items)
- Lottery systems (prizes with different probabilities)
- Resource allocation (different rarity resources, materials)
- Random event trigger (different probability events)
Application Scenarios
Game Development
- Random item drops
- Character attribute generation
- Map random generation
- Probability event trigger
Financial Application
- Risk simulation
- Investment portfolio analysis
- Market behavior simulation
Test Data
- Random test case generation
- Load test data
- Performance test sample
Scientific Calculation
- Monte Carlo simulation
- Particle system simulation
- Random sampling
Notes
- All random number generation depends on the blockchain hash of the Trust Chain, please ensure normal network connection
- Weighted random selector weight value range is 0-1000, representing 0-100% probability
- Probability distribution parameters need to provide correct parameter list according to specific distribution type
- It is recommended to use salt parameter in production environment to increase randomness
Error Handling
Service may return error types:
Common error codes:
INVALID_PARAMS
: Parameter errorNETWORK_ERROR
: Network connection errorCHAIN_ERROR
: Blockchain access errorINTERNAL_ERROR
: Internal service error
Performance Consideration
- Each random number generation request needs to access the blockchain, which may have a certain delay
- It is recommended to cache frequently used random numbers
- Pay attention to request frequency when handling a large number of concurrent requests
Contribution Guide
Welcome to submit Issue and Pull Request to help improve this project. Before submitting, please ensure:
- Code conforms to PEP 8 specification
- Appropriate test cases are added
- Related documents are updated
License
This project uses MIT License. See LICENSE file for details.
You must be authenticated.
Tools
RandomWeb3MCP is a random element generation service based on EVM block hash. The service provides various random element generation tools that can be used in games, finance, testing, and other fields.