Skip to main content
Glama

generate_distribution

Generate random numbers based on specified probability distributions like uniform, normal, exponential, and binomial. Useful for simulations, risk analysis, statistical sampling, and load testing.

Instructions

Probability Distribution Random Generator

Generate random numbers according to specified probability distribution type and parameters. Supports various common probability distributions. Args: distribution_type (int): Distribution type: 1 = Uniform distribution (parameters: [min_value, max_value]) 2 = Normal distribution (parameters: [mean, standard_deviation]) 3 = Exponential distribution (parameters: [scale_parameter]) 4 = Binomial distribution (parameters: [trials, success_probability]) distribution_parameters (List[float]): Distribution parameter list salt (str, optional): Random number salt value for increased randomness. Defaults to "". Returns: str: JSON string containing random value and distribution information, formatted as: { "requestId": "Generated request ID", "randomValue": Generated random value, "distributionMetadata": { "distributionType": Distribution type, ...Distribution parameters } } Application Scenarios: 1. Financial market simulation (return distribution, risk analysis) 2. Natural phenomena simulation (particle distribution, noise generation) 3. Load testing (user behavior distribution) 4. Statistical sampling (experimental data generation)

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
distribution_parametersYes
distribution_typeYes
saltNo

Implementation Reference

  • main.py:142-175 (handler)
    MCP tool registration and handler wrapper for generate_distribution. Delegates to the distribution_generator utility function.
    @mcp.tool() async def generate_distribution(distribution_type: int, distribution_parameters: List[float], salt: str = "") -> str: """Probability Distribution Random Generator Generate random numbers according to specified probability distribution type and parameters. Supports various common probability distributions. Args: distribution_type (int): Distribution type: 1 = Uniform distribution (parameters: [min_value, max_value]) 2 = Normal distribution (parameters: [mean, standard_deviation]) 3 = Exponential distribution (parameters: [scale_parameter]) 4 = Binomial distribution (parameters: [trials, success_probability]) distribution_parameters (List[float]): Distribution parameter list salt (str, optional): Random number salt value for increased randomness. Defaults to "". Returns: str: JSON string containing random value and distribution information, formatted as: { "requestId": "Generated request ID", "randomValue": Generated random value, "distributionMetadata": { "distributionType": Distribution type, ...Distribution parameters } } Application Scenarios: 1. Financial market simulation (return distribution, risk analysis) 2. Natural phenomena simulation (particle distribution, noise generation) 3. Load testing (user behavior distribution) 4. Statistical sampling (experimental data generation) """ return await distribution_generator(distribution_type, distribution_parameters, salt)
  • Core implementation of the distribution generator using NumPy for uniform, normal, exponential, and binomial distributions. Derives seed from blockchain random source.
    async def distribution_generator(distribution_type: int, distribution_parameters: List[float], salt: str="") -> Dict: """ Distribution random generator Generate random numbers following specified probability distribution Args: distribution_type: Type of distribution: 1 = Uniform distribution 2 = Normal distribution 3 = Exponential distribution 4 = Binomial distribution distribution_parameters: Parameters for the distribution salt: Optional salt value for additional randomness Returns: Dict containing random value and distribution metadata """ random_num = await get_random_str() if not random_num: return {"error": "Failed to get random number"} request_id = generate_request_id(random_num) seed = _derive_seed(request_id, salt) np.random.seed(seed) metadata = {"distributionType": distribution_type} if distribution_type == 1: # Uniform distribution min_val, max_val = distribution_parameters random_value = float(np.random.uniform(min_val, max_val)) metadata.update({"min": min_val, "max": max_val}) elif distribution_type == 2: # Normal distribution mean, std_dev = distribution_parameters random_value = float(np.random.normal(mean, std_dev)) metadata.update({"mean": mean, "stdDev": std_dev}) elif distribution_type == 3: # Exponential distribution scale = distribution_parameters[0] random_value = float(np.random.exponential(scale)) metadata.update({"scale": scale}) elif distribution_type == 4: # Binomial distribution n, p = distribution_parameters random_value = int(np.random.binomial(n, p)) metadata.update({"trials": n, "probability": p}) else: raise ValueError("Unsupported distribution type") result = { "requestId": request_id, "randomValue": random_value, "distributionMetadata": metadata } return result

Other Tools

Related Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/suxiongye/random-web3-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server