Skip to main content
Glama

MCP Data Wrangler

data_shape.py1.67 kB
import json from typing import Any from mcp import types from pydantic import ConfigDict from .model import Data class DataShapeInputSchema(Data): model_config = ConfigDict( validate_assignment=True, frozen=True, extra="forbid", arbitrary_types_allowed=True, ) @staticmethod def input_schema() -> dict: return { "type": "object", "properties": { "input_data_file_path": { "type": "string", "description": "Path to the input data file", }, }, } @staticmethod def from_schema(inuput_data_file_path: str) -> "DataShapeInputSchema": data = Data.from_file(inuput_data_file_path) return DataShapeInputSchema(df=data.df) @staticmethod def from_args(arguments: dict[str, Any]) -> "DataShapeInputSchema": input_data_file_path = arguments["input_data_file_path"] return DataShapeInputSchema.from_schema(inuput_data_file_path=input_data_file_path) async def handle_data_shape( arguments: dict[str, Any], ) -> list[types.TextContent | types.ImageContent | types.EmbeddedResource]: data_shape_input = DataShapeInputSchema.from_args(arguments) data_shape = data_shape_input.df.shape num_rows = data_shape[0] num_cols = data_shape[1] return [ types.TextContent( type="text", text=json.dumps( { "description": "Data shape of the input data", "rows": num_rows, "cols": num_cols, } ), ) ]

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/shibuiwilliam/mcp-server-data-wrangler'

If you have feedback or need assistance with the MCP directory API, please join our Discord server