Skip to main content
Glama

MCP Data Wrangler

data_min.py2.84 kB
import json from typing import Any from mcp import types from pydantic import ConfigDict from ..make_logger import make_logger from .model import Data logger = make_logger(__name__) class DataMinInputSchema(Data): model_config = ConfigDict( validate_assignment=True, frozen=True, extra="forbid", arbitrary_types_allowed=True, ) @staticmethod def input_schema() -> dict: return { "type": "object", "properties": { "input_data_file_path": { "type": "string", "description": "Path to the input data file", }, }, } @staticmethod def from_schema(input_data_file_path: str) -> "DataMinInputSchema": data = Data.from_file(input_data_file_path) return DataMinInputSchema(df=data.df) @staticmethod def from_args(arguments: dict[str, Any]) -> "DataMinInputSchema": input_data_file_path = arguments["input_data_file_path"] return DataMinInputSchema.from_schema(input_data_file_path=input_data_file_path) async def handle_data_min( arguments: dict[str, Any], ) -> list[types.TextContent | types.ImageContent | types.EmbeddedResource]: data_min_input = DataMinInputSchema.from_args(arguments) min_df = data_min_input.df.min() # Convert the DataFrame to a dictionary format min_dict = { "description": "Minimum values for each column", "min_values": {col: str(val) if val is not None else None for col, val in zip(min_df.columns, min_df.row(0))}, } return [ types.TextContent( type="text", text=json.dumps(min_dict), ) ] async def handle_data_min_horizontal( arguments: dict[str, Any], ) -> list[types.TextContent | types.ImageContent | types.EmbeddedResource]: data_min_input = DataMinInputSchema.from_args(arguments) try: min_horizontal_df = data_min_input.df.min_horizontal() # Convert the DataFrame to a dictionary format min_horizontal_dict = { "description": "Minimum values across columns for each row", "min_values": {str(i): str(val) if val is not None else None for i, val in enumerate(min_horizontal_df)}, } return [ types.TextContent( type="text", text=json.dumps(min_horizontal_dict), ) ] except Exception as e: logger.error(f"Error calculating min: {e}") return [ types.TextContent( type="text", text=json.dumps( { "error": "Failed to calculate min values.", "message": str(e), } ), ) ]

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/shibuiwilliam/mcp-server-data-wrangler'

If you have feedback or need assistance with the MCP directory API, please join our Discord server