Skip to main content
Glama

MCP Data Wrangler

data_count.py1.67 kB
import json from typing import Any from mcp import types from pydantic import ConfigDict from .model import Data class DataCountInputSchema(Data): model_config = ConfigDict( validate_assignment=True, frozen=True, extra="forbid", arbitrary_types_allowed=True, ) @staticmethod def input_schema() -> dict: return { "type": "object", "properties": { "input_data_file_path": { "type": "string", "description": "Path to the input data file", }, }, } @staticmethod def from_schema(input_data_file_path: str) -> "DataCountInputSchema": data = Data.from_file(input_data_file_path) return DataCountInputSchema(df=data.df) @staticmethod def from_args(arguments: dict[str, Any]) -> "DataCountInputSchema": input_data_file_path = arguments["input_data_file_path"] return DataCountInputSchema.from_schema(input_data_file_path=input_data_file_path) async def handle_data_count( arguments: dict[str, Any], ) -> list[types.TextContent | types.ImageContent | types.EmbeddedResource]: data_count_input = DataCountInputSchema.from_args(arguments) count_df = data_count_input.df.count() # Convert the DataFrame to a dictionary format count_dict = { "description": "Number of non-null elements for each column", "counts": {col: int(val) for col, val in zip(count_df.columns, count_df.row(0))}, } return [ types.TextContent( type="text", text=json.dumps(count_dict), ) ]

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/shibuiwilliam/mcp-server-data-wrangler'

If you have feedback or need assistance with the MCP directory API, please join our Discord server