# Code Examples - Cross-Domain Reference
## Backend Development
### Node.js Express API
```javascript
// server.js - Production-ready Express API
const express = require('express');
const helmet = require('helmet');
const cors = require('cors');
const rateLimit = require('express-rate-limit');
const { body, validationResult } = require('express-validator');
const app = express();
// Security middleware
app.use(helmet());
app.use(cors({ origin: process.env.ALLOWED_ORIGINS?.split(',') }));
app.use(express.json({ limit: '10kb' }));
// Rate limiting
const limiter = rateLimit({
windowMs: 15 * 60 * 1000,
max: 100,
});
app.use('/api/', limiter);
// Health check
app.get('/health', (req, res) => res.json({ status: 'ok' }));
// Protected route example
app.get('/api/users',
authenticate,
authorize(['admin', 'manager']),
async (req, res) => {
const users = await User.findAll({ limit: 100 });
res.json(users);
}
);
// Global error handler
app.use((err, req, res, next) => {
console.error(err.stack);
res.status(err.status || 500).json({
error: process.env.NODE_ENV === 'production'
? 'Internal server error'
: err.message
});
});
```
### Python FastAPI
```python
# main.py - FastAPI with authentication
from fastapi import FastAPI, Depends, HTTPException, status
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from pydantic import BaseModel, EmailStr
from typing import List, Optional
import jwt
app = FastAPI(title="API", version="1.0.0")
security = HTTPBearer()
class User(BaseModel):
email: EmailStr
name: str
role: str = "user"
class UserCreate(BaseModel):
email: EmailStr
password: str
name: str
def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)):
try:
payload = jwt.decode(
credentials.credentials,
settings.SECRET_KEY,
algorithms=["HS256"]
)
return payload
except jwt.ExpiredSignatureError:
raise HTTPException(status_code=401, detail="Token expired")
except jwt.InvalidTokenError:
raise HTTPException(status_code=401, detail="Invalid token")
@app.get("/users", response_model=List[User])
async def get_users(
skip: int = 0,
limit: int = 100,
current_user: dict = Depends(verify_token)
):
if current_user.get("role") != "admin":
raise HTTPException(status_code=403, detail="Admin access required")
return await User.get_all(skip=skip, limit=limit)
@app.post("/users", response_model=User, status_code=201)
async def create_user(user: UserCreate):
existing = await User.get_by_email(user.email)
if existing:
raise HTTPException(status_code=400, detail="Email already registered")
return await User.create(**user.dict())
```
---
## Frontend Development
### React with TypeScript
```tsx
// components/UserList.tsx
import { useState, useEffect, useCallback } from 'react';
import { useQuery, useMutation, useQueryClient } from '@tanstack/react-query';
interface User {
id: string;
name: string;
email: string;
role: 'admin' | 'user';
}
interface UserListProps {
onUserSelect?: (user: User) => void;
}
export function UserList({ onUserSelect }: UserListProps) {
const queryClient = useQueryClient();
const [search, setSearch] = useState('');
const { data: users, isLoading, error } = useQuery({
queryKey: ['users', search],
queryFn: () => fetchUsers({ search }),
staleTime: 5 * 60 * 1000, // 5 minutes
});
const deleteMutation = useMutation({
mutationFn: deleteUser,
onSuccess: () => {
queryClient.invalidateQueries({ queryKey: ['users'] });
},
});
const handleDelete = useCallback((id: string) => {
if (confirm('Delete this user?')) {
deleteMutation.mutate(id);
}
}, [deleteMutation]);
if (isLoading) return <Skeleton count={5} />;
if (error) return <ErrorMessage error={error} />;
return (
<div className="space-y-4">
<SearchInput
value={search}
onChange={setSearch}
placeholder="Search users..."
/>
<ul className="divide-y divide-gray-200">
{users?.map((user) => (
<li key={user.id} className="py-4 flex justify-between">
<button
onClick={() => onUserSelect?.(user)}
className="text-left hover:bg-gray-50 p-2 rounded"
>
<p className="font-medium">{user.name}</p>
<p className="text-gray-500 text-sm">{user.email}</p>
</button>
<button
onClick={() => handleDelete(user.id)}
disabled={deleteMutation.isPending}
className="text-red-600 hover:text-red-800"
>
Delete
</button>
</li>
))}
</ul>
</div>
);
}
```
### Custom React Hook
```tsx
// hooks/useDebounce.ts
import { useState, useEffect } from 'react';
export function useDebounce<T>(value: T, delay: number = 500): T {
const [debouncedValue, setDebouncedValue] = useState<T>(value);
useEffect(() => {
const timer = setTimeout(() => setDebouncedValue(value), delay);
return () => clearTimeout(timer);
}, [value, delay]);
return debouncedValue;
}
// hooks/useLocalStorage.ts
export function useLocalStorage<T>(key: string, initialValue: T) {
const [storedValue, setStoredValue] = useState<T>(() => {
if (typeof window === 'undefined') return initialValue;
try {
const item = window.localStorage.getItem(key);
return item ? JSON.parse(item) : initialValue;
} catch {
return initialValue;
}
});
const setValue = (value: T | ((val: T) => T)) => {
const valueToStore = value instanceof Function ? value(storedValue) : value;
setStoredValue(valueToStore);
window.localStorage.setItem(key, JSON.stringify(valueToStore));
};
return [storedValue, setValue] as const;
}
```
---
## Database Operations
### PostgreSQL Queries
```sql
-- Optimized query with index hints
CREATE INDEX CONCURRENTLY idx_orders_user_date
ON orders(user_id, created_at DESC);
-- Window function for ranking
SELECT
user_id,
order_date,
total,
ROW_NUMBER() OVER (
PARTITION BY user_id
ORDER BY total DESC
) as rank
FROM orders
WHERE order_date >= CURRENT_DATE - INTERVAL '30 days';
-- CTE for complex aggregation
WITH monthly_stats AS (
SELECT
DATE_TRUNC('month', created_at) as month,
COUNT(*) as orders,
SUM(total) as revenue
FROM orders
WHERE status = 'completed'
GROUP BY 1
)
SELECT
month,
orders,
revenue,
revenue / NULLIF(orders, 0) as avg_order_value,
LAG(revenue) OVER (ORDER BY month) as prev_month_revenue,
(revenue - LAG(revenue) OVER (ORDER BY month)) /
NULLIF(LAG(revenue) OVER (ORDER BY month), 0) * 100 as growth_pct
FROM monthly_stats
ORDER BY month DESC;
```
---
## AI/ML Code
### RAG Pipeline
```python
# rag_pipeline.py
from llm_client import LLMClient # Any LLM API wrapper
from vector_db import VectorDB # Any vector database client
import numpy as np
class RAGPipeline:
def __init__(self, llm_key: str, vector_key: str, index_name: str):
self.llm = LLMClient(api_key=llm_key)
self.vector_db = VectorDB(api_key=vector_key)
self.index = self.vector_db.get_index(index_name)
def embed(self, text: str) -> list[float]:
response = self.llm.embeddings.create(
model="text-embedding-large",
input=text
)
return response.data[0].embedding
def retrieve(self, query: str, top_k: int = 5) -> list[dict]:
embedding = self.embed(query)
results = self.index.query(
vector=embedding,
top_k=top_k,
include_metadata=True
)
return [
{"text": m.metadata["text"], "score": m.score}
for m in results.matches
]
def generate(self, query: str, context: list[dict]) -> str:
context_text = "\n\n".join([c["text"] for c in context])
messages = [
{"role": "system", "content": "Answer based on the context provided."},
{"role": "user", "content": f"Context:\n{context_text}\n\nQuestion: {query}"}
]
response = self.llm.chat.completions.create(
model="large-language-model",
messages=messages,
temperature=0.1
)
return response.choices[0].message.content
def query(self, question: str) -> dict:
context = self.retrieve(question)
answer = self.generate(question, context)
return {"answer": answer, "sources": context}
```
---
## DevOps/Infrastructure
### Docker Compose
```yaml
# docker-compose.yml
version: '3.8'
services:
api:
build:
context: .
dockerfile: Dockerfile
ports:
- "3000:3000"
environment:
- NODE_ENV=production
- DATABASE_URL=postgresql://user:pass@db:5432/app
- REDIS_URL=redis://redis:6379
depends_on:
db:
condition: service_healthy
redis:
condition: service_started
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:3000/health"]
interval: 30s
timeout: 10s
retries: 3
deploy:
replicas: 2
resources:
limits:
cpus: '0.5'
memory: 512M
db:
image: postgres:15-alpine
volumes:
- postgres_data:/var/lib/postgresql/data
environment:
POSTGRES_USER: user
POSTGRES_PASSWORD: pass
POSTGRES_DB: app
healthcheck:
test: ["CMD-SHELL", "pg_isready -U user -d app"]
interval: 10s
timeout: 5s
retries: 5
redis:
image: redis:7-alpine
volumes:
- redis_data:/data
volumes:
postgres_data:
redis_data:
```
### CI/CD Pipeline
```yaml
# .ci/workflows/ci.yml
name: CI/CD
on:
push:
branches: [main]
pull_request:
branches: [main]
jobs:
test:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: checkout-action@v4
- name: Setup Node.js
uses: setup-node-action@v4
with:
node-version: '20'
cache: 'npm'
- run: npm ci
- run: npm test -- --coverage
- name: Upload coverage
uses: coverage-action@v3
security:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: checkout-action@v4
- run: npm audit --production
- name: Security scan
uses: security-scanner@master
env:
SECURITY_TOKEN: ${{ secrets.SECURITY_TOKEN }}
deploy:
needs: [test, security]
if: github.ref == 'refs/heads/main'
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: checkout-action@v4
- name: Deploy
run: |
echo "Deploying to production..."
```
---
## Expert Activation
```
@fullstack-developer
@backend-engineer
@frontend-engineer
@database-engineer
@devops-engineer
@llm-engineer
```
or describe your coding challenge