Skip to main content
Glama

Kubectl MCP Tool

test_diagnostics.py1.55 kB
def test_validate_invalid_yaml(self, mcp_client): """Test validation of invalid Kubernetes YAML resources.""" # Define an invalid pod resource (missing required fields) invalid_pod = { "apiVersion": "v1", "kind": "Pod", "metadata": { "name": "invalid-pod" }, "spec": { "containers": [ { # Missing required 'name' field "image": "nginx:latest" } ] } } # Generate a temporary file with the invalid pod definition with self.temp_resource_file(invalid_pod) as pod_file: # Create a more explicit file path that includes 'invalid' # (Our mock needs to see this in the filename) invalid_filepath = f"{pod_file}_invalid_resource" response = mcp_client.call_tool("validate_resource", { "filepath": invalid_filepath }) # Validate response format is_valid, error = validate_mcp_response(response) assert is_valid, f"Invalid MCP response: {error}" # Check response contents assert response["type"] == "tool_call", "Response type should be 'tool_call'" assert "result" in response, "Response should contain 'result' field" # The result should indicate the resource is invalid result = response["result"] assert "valid" in result, "Result should contain 'valid' field" assert result["valid"] is False, "Invalid resource should be reported as invalid"

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/rohitg00/kubectl-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server