Skip to main content
Glama

Kubectl MCP Tool

cursor_test.py2.95 kB
#!/usr/bin/env python """ Test script to check if the kubectl-mcp-tool module can be run correctly. This simulates how Cursor would invoke the module. """ import sys import subprocess import os def test_module_invocation(): """Test if the module can be invoked with 'python -m'.""" print("Testing module invocation with 'python -m kubectl_mcp_tool.cli.cli serve'") # Get the Python executable path python_exe = sys.executable print(f"Using Python: {python_exe}") # Run the command with subprocess try: # Start the process but don't wait for it to complete process = subprocess.Popen( [python_exe, "-m", "kubectl_mcp_tool.cli.cli", "serve"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) # Wait for a short time to see if it starts import time time.sleep(2) # Check if the process is still running if process.poll() is None: print("✅ Module started successfully!") print("Terminating the process...") process.terminate() return True else: stdout, stderr = process.communicate() print("❌ Module failed to start") print("STDOUT:", stdout) print("STDERR:", stderr) return False except Exception as e: print(f"❌ Error running the module: {e}") return False def print_environment_info(): """Print information about the environment.""" print("\n=== Environment Information ===") print(f"Python version: {sys.version}") print(f"Python executable: {sys.executable}") print(f"Python path: {sys.path}") print(f"Working directory: {os.getcwd()}") # Check if the module is importable try: import kubectl_mcp_tool print(f"✅ kubectl_mcp_tool module found at: {kubectl_mcp_tool.__file__}") except ImportError as e: print(f"❌ kubectl_mcp_tool module not found: {e}") # Check PATH environment variable print(f"PATH: {os.environ.get('PATH', '')}") if __name__ == "__main__": print("=== kubectl-mcp-tool Module Test ===") success = test_module_invocation() print_environment_info() print("\n=== Recommendation ===") if success: print("The module can be invoked correctly. Cursor should be able to use it with this configuration:") print(""" { "mcpServers": { "kubernetes": { "command": "python", "args": ["-m", "kubectl_mcp_tool.cli.cli", "serve"] } } } """) else: print("The module could not be invoked correctly. Try these solutions:") print("1. Make sure kubectl_mcp_tool is installed correctly") print("2. Try using an absolute path to the Python executable in the Cursor configuration") print("3. Check the installation logs for any errors")

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/rohitg00/kubectl-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server