Skip to main content
Glama

New Relic MCP Server

by piekstra

New Relic MCP Server

A Model Context Protocol (MCP) server that provides programmatic access to New Relic APIs, enabling AI assistants and other tools to interact with New Relic monitoring and observability data.

Features

  • APM Application Management: List and retrieve application details, metrics, and metric data
  • NRQL Queries: Execute NRQL queries via NerdGraph
  • Log Parsing Rules: Intelligently create, manage, and test GROK patterns for log parsing
  • Alert Policies: List and manage alert policies
  • Synthetic Monitoring: Access synthetic monitor information
  • Dashboards: List and retrieve dashboard configurations
  • Entity Search: Search across all New Relic entities
  • Infrastructure: Monitor servers and infrastructure components
  • Deployments: Track and create application deployments
  • User Management: List and manage users
  • NerdGraph: Execute custom GraphQL queries

Installation

pip install newrelic-mcp-server

Option 2: Install from Source

# Clone this repository git clone https://github.com/piekstra/newrelic-mcp-server.git cd newrelic-mcp-server # Install in development mode pip install -e .

Configuration

For enhanced security on macOS, use the built-in keychain storage instead of environment variables:

# Run the secure setup wizard newrelic-mcp-setup # Or set up manually with Python python -m newrelic_mcp.credentials

This will securely store your API key and account ID in the macOS Keychain, eliminating the need to store sensitive credentials in plain text files.

Environment Variables (Alternative)

If you prefer environment variables or are not on macOS, you can use:

# Required export NEWRELIC_API_KEY="your-api-key-here" # Your New Relic User API key # Optional export NEWRELIC_REGION="US" # or "EU" (default: "US") export NEWRELIC_ACCOUNT_ID="your-account-id" # Required for some operations

Note: The server will automatically prefer keychain storage over environment variables when both are available.

Getting Your API Key

  1. Log in to New Relic
  2. Navigate to the API Keys page
  3. Create a new User API key (starts with NRAK)
  4. Copy the key and set it as the NEWRELIC_API_KEY environment variable

Usage

With Claude Desktop

After setting up credentials with newrelic-mcp-setup, add the following to your Claude Desktop configuration (claude_desktop_config.json):

{ "mcpServers": { "newrelic": { "command": "newrelic-mcp-server", "env": { "NEWRELIC_REGION": "US" } } } }
Option 2: Using Environment Variables (Less Secure)
{ "mcpServers": { "newrelic": { "command": "newrelic-mcp-server", "env": { "NEWRELIC_API_KEY": "your-api-key-here", "NEWRELIC_REGION": "US", "NEWRELIC_ACCOUNT_ID": "your-account-id" } } } }

Security Note: Option 1 is strongly recommended as it keeps your sensitive API key out of configuration files.

With Other MCP Clients

# Start the server directly newrelic-mcp-server # Or run as a module python -m newrelic_mcp

Available Tools

Application Management

  • list_applications - List all APM applications
  • get_application - Get details for a specific application
  • get_application_metrics - Get available metrics for an application
  • get_application_metric_data - Get metric data with time range filtering

Querying

  • query_nrql - Execute NRQL queries for data analysis
  • nerdgraph_query - Execute custom NerdGraph GraphQL queries

Monitoring

  • list_alert_policies - List all alert policies
  • get_alert_policy - Get specific alert policy details
  • list_synthetic_monitors - List synthetic monitors
  • get_synthetic_monitor - Get synthetic monitor details

Dashboards & Visualization

  • list_dashboards - List all dashboards
  • get_dashboard - Get dashboard configuration and widgets

Infrastructure

  • list_servers - List monitored servers
  • get_server - Get server details
  • search_entities - Search across all entity types

Deployment Tracking

  • list_deployments - List application deployments
  • create_deployment - Record new deployments

User Management

  • list_users - List account users
  • get_user - Get user details

Log Parsing Rules

  • list_log_parsing_rules - List all log parsing rules for an account
  • create_log_parsing_rule - Create a new log parsing rule with GROK pattern and NRQL filter
  • update_log_parsing_rule - Update an existing log parsing rule
  • delete_log_parsing_rule - Delete a log parsing rule
  • test_log_parsing_rule - Test a GROK pattern against sample logs (generates pattern if not provided)
  • generate_log_parsing_rule - Intelligently generate GROK patterns from log samples or NRQL queries

Credential Management

  • manage_credentials - Securely manage API credentials in keychain
    • action="status" - Show current credential storage status
    • action="store" - Store new credentials securely (requires api_key parameter)
    • action="delete" - Remove all stored credentials

Examples

Query Application Performance

# List all applications await list_applications() # Get specific application metrics await get_application_metric_data( app_id='123456', metric_names=['HttpDispatcher', 'Apdex'], from_time='2024-01-01T00:00:00Z', to_time='2024-01-02T00:00:00Z' )

Execute NRQL Query

await query_nrql( account_id='1234567', nrql='SELECT average(duration) FROM Transaction WHERE appName = "My App" SINCE 1 hour ago' )

Search Entities

await search_entities( query='name LIKE "%production%"', limit=50 )

Create Deployment Marker

await create_deployment( app_id='123456', revision='v2.0.1', description='Production deployment', user='deploy-bot', changelog='Fixed critical bug in payment processing' )

Log Parsing Rules

Generate GROK Pattern from Log Samples
# Generate parsing rule from sample logs (sanitized example) await generate_log_parsing_rule( log_samples=[ "Updated info for user 12345678-1234-5678-9012-123456789012 (updated 1 rows, expected 1) - updated values: EmailAddress test@example.com, FirstName TestName, LastName TestLast, Active True, EmailConfirmed False" ] ) # Returns generated GROK pattern and NRQL filter: # { # "grok_pattern": "Updated info for user %{UUID:user_id:string} \\(updated %{INT:rows_affected:long} rows, expected %{INT:rows_expected:long}\\) - updated values: EmailAddress %{DATA:email:string}, FirstName %{WORD:first_name:string}, LastName %{WORD:last_name:string}, Active %{WORD:active:string}, EmailConfirmed %{WORD:emailconfirmed:string}", # "nrql_pattern": "SELECT * FROM Log WHERE message LIKE 'Updated info for user % (updated % rows, expected %) - updated values: EmailAddress %, FirstName %, LastName %, Active %, EmailConfirmed %'", # "suggested_description": "Auto-generated parsing rule for single log sample" # }
Create Log Parsing Rule
# Create a new parsing rule using generated patterns await create_log_parsing_rule( description="User update audit log parsing", grok="Updated info for user %{UUID:user_id:string} \\(updated %{INT:rows_affected:long} rows, expected %{INT:rows_expected:long}\\) - updated values: EmailAddress %{DATA:email:string}, FirstName %{WORD:first_name:string}, LastName %{WORD:last_name:string}, Active %{WORD:active:string}, EmailConfirmed %{WORD:emailconfirmed:string}", nrql="SELECT * FROM Log WHERE message LIKE 'Updated info for user % (updated % rows, expected %) - updated values: EmailAddress %, FirstName %, LastName %, Active %, EmailConfirmed %'", enabled=True )
Generate from Live Logs
# Generate patterns from logs matching a query await generate_log_parsing_rule( log_query="service = 'user-service' AND message LIKE '%Updated info for user%'", time_range="1 day ago", field_hints={"user_id": "UUID", "email": "EMAIL"} )
Test Parsing Rules
# Test a GROK pattern against samples await test_log_parsing_rule( log_samples=["Updated info for user 12345678-1234-5678-9012-123456789012 (updated 1 rows, expected 1)"], grok_pattern="Updated info for user %{UUID:user_id:string} \\(updated %{INT:rows_affected:long} rows, expected %{INT:rows_expected:long}\\)" )
Manage Parsing Rules
# List all parsing rules await list_log_parsing_rules() # Update a rule await update_log_parsing_rule( rule_id="12345", description="Updated user audit log parsing", enabled=False ) # Delete a rule await delete_log_parsing_rule(rule_id="12345")

Development

# Clone the repository git clone https://github.com/piekstra/newrelic-mcp-server.git cd newrelic-mcp-server # Install in development mode pip install -e .[dev] # Install pre-commit hooks pre-commit install # Run the server newrelic-mcp-server # Run tests (when available) pytest # Format code black newrelic_mcp # Lint code flake8 newrelic_mcp # Run all pre-commit checks pre-commit run --all-files

Dependencies

  • fastmcp - FastMCP framework for building MCP servers
  • httpx - Async HTTP client for API requests
  • python-dotenv - Environment variable management (optional)

API Rate Limits

Be aware of New Relic's API rate limits:

  • REST API v2: Subject to rate limiting per account
  • NerdGraph: Higher rate limits but still enforced
  • Synthetic Monitoring API: 3 requests per second

Security

  • Use keychain storage on macOS: Run newrelic-mcp-setup to store credentials securely in the system keychain
  • Never commit API keys to version control
  • Avoid storing sensitive credentials in plain text configuration files
  • API keys should have minimal required permissions
  • Consider using separate keys for different environments
  • The server automatically prioritizes keychain storage over environment variables for enhanced security

Troubleshooting

Authentication Errors

  • Ensure your API key starts with NRAK
  • Verify the key has the necessary permissions
  • Check if you're using the correct region (US/EU)
  • If using keychain storage, verify credentials are stored with manage_credentials action="status"
  • Try re-running newrelic-mcp-setup if keychain access fails

Rate Limiting

If you encounter rate limit errors:

  • Implement exponential backoff in your client code
  • Cache frequently accessed data
  • Batch operations where possible

Connection Issues

  • Verify network connectivity
  • Check firewall rules for API endpoints
  • Ensure correct base URLs for your region

Python Environment

  • Ensure Python 3.10+ is installed
  • Install dependencies with pip install -r requirements.txt
  • Check that the script is executable: chmod +x newrelic_mcp_server.py

Command Not Found Issues

If you encounter "command not found" errors after installation:

  • Try using the full path to the installed package:
    • Linux/macOS (user install): ~/.local/bin/newrelic-mcp-server
    • macOS (Python framework): /Library/Frameworks/Python.framework/Versions/3.13/bin/newrelic-mcp-server
    • System-wide: /usr/local/bin/newrelic-mcp-server
  • Or add the installation directory to your PATH: export PATH="$HOME/.local/bin:$PATH"
  • In Claude Desktop config, use the full path if the command isn't found:
    { "mcpServers": { "newrelic": { "command": "/Library/Frameworks/Python.framework/Versions/3.13/bin/newrelic-mcp-server", "env": { "NEWRELIC_API_KEY": "your-api-key-here", "NEWRELIC_REGION": "US", "NEWRELIC_ACCOUNT_ID": "your-account-id" } } } }

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

MIT

Support

For issues and questions:

-
security - not tested
A
license - permissive license
-
quality - not tested

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

Enables AI assistants to interact with New Relic monitoring and observability data through programmatic access to New Relic APIs. Supports APM management, NRQL queries, alert policies, synthetic monitoring, dashboards, infrastructure monitoring, and deployment tracking.

  1. Features
    1. Installation
      1. Option 1: Install from PyPI (Recommended)
      2. Option 2: Install from Source
    2. Configuration
      1. Secure Credential Setup (Recommended for macOS)
      2. Environment Variables (Alternative)
      3. Getting Your API Key
    3. Usage
      1. With Claude Desktop
      2. With Other MCP Clients
    4. Available Tools
      1. Application Management
      2. Querying
      3. Monitoring
      4. Dashboards & Visualization
      5. Infrastructure
      6. Deployment Tracking
      7. User Management
      8. Log Parsing Rules
      9. Credential Management
    5. Examples
      1. Query Application Performance
      2. Execute NRQL Query
      3. Search Entities
      4. Create Deployment Marker
      5. Log Parsing Rules
    6. Development
      1. Dependencies
        1. API Rate Limits
          1. Security
            1. Troubleshooting
              1. Authentication Errors
              2. Rate Limiting
              3. Connection Issues
              4. Python Environment
              5. Command Not Found Issues
            2. Contributing
              1. License
                1. Support

                  Related MCP Servers

                  • -
                    security
                    A
                    license
                    -
                    quality
                    Provides a standardized interface for AI assistants to interact with Obsidian vaults through a local REST API, enabling reading, writing, searching, and managing notes.
                    Last updated -
                    55
                    MIT License
                  • -
                    security
                    F
                    license
                    -
                    quality
                    Enables natural language interaction with the Avalanche blockchain through AI assistants, allowing users to execute Avalanche CLI commands and AvalancheJS API operations without technical knowledge.
                    Last updated -
                    1
                  • -
                    security
                    A
                    license
                    -
                    quality
                    Allows AI models to interact with Obsidian notes through the Local REST API, enabling creation, reading, updating, searching of notes, and Git-based automatic backups.
                    Last updated -
                    251
                    MIT License
                    • Linux
                    • Apple
                  • A
                    security
                    A
                    license
                    A
                    quality
                    Provides seamless integration between AI assistants and Prometheus, enabling natural language interactions with your monitoring infrastructure. This server allows for effortless querying, discovery, and analysis of metrics.
                    Last updated -
                    10
                    29
                    20
                    MIT License

                  View all related MCP servers

                  MCP directory API

                  We provide all the information about MCP servers via our MCP API.

                  curl -X GET 'https://glama.ai/api/mcp/v1/servers/piekstra/newrelic-mcp-server'

                  If you have feedback or need assistance with the MCP directory API, please join our Discord server