Skip to main content
Glama

Industrial MCP Server

by intecrel

🏭 Industrial MCP Server

A comprehensive Model Context Protocol (MCP) server designed for industrial system monitoring and control. Built with Next.js, TypeScript, and the Vercel MCP adapter, this server provides Claude AI with powerful tools to interact with industrial systems.

🚀 Live Demo

  • Production Server: https://industrial-mcp-delta.vercel.app
  • MCP Endpoint: https://industrial-mcp-delta.vercel.app/api/mcp

✨ Features

Available MCP Tools

  • 🔄 Echo Tool - Basic communication testing
  • 📊 System Status - Real-time industrial system health monitoring
  • 📈 Operational Data - Performance metrics and analytics
  • 🔧 Equipment Monitor - Individual equipment status and maintenance tracking

Industrial Metrics Provided

  • System uptime and health status
  • CPU, memory, disk, and network monitoring
  • Throughput and performance analytics
  • Equipment temperature, vibration, and pressure readings
  • Maintenance scheduling and alerts
  • Historical trend analysis

🛠️ Quick Start

Prerequisites

  • Node.js 18+
  • npm or yarn
  • Git

Installation

  1. Clone the repository:
git clone https://github.com/intecrel/industrial-mcp.git cd industrial-mcp
  1. Install dependencies:
npm install
  1. Start development server:
npm run dev
  1. Verify the server is running:
# Test basic endpoint curl http://localhost:3000/api/mcp # Test MCP protocol initialization curl -X POST http://localhost:3000/api/mcp \ -H "Content-Type: application/json" \ -H "Accept: application/json, text/event-stream" \ -d '{ "jsonrpc": "2.0", "id": 1, "method": "initialize", "params": { "protocolVersion": "2024-11-05", "capabilities": {"roots": {"listChanged": false}}, "clientInfo": {"name": "test-client", "version": "1.0.0"} } }'

🧪 Testing with MCP Inspector

The MCP Inspector provides a web interface for testing your MCP server:

# Install MCP Inspector globally npm install -g @modelcontextprotocol/inspector # Run inspector against local server mcp-inspector http://localhost:3000/api/mcp # Or run against production server mcp-inspector https://industrial-fvucjqopi-samuels-projects-2dd2e35e.vercel.app/api/mcp

🤖 Claude Desktop Integration

To connect this MCP server to Claude Desktop:

1. Edit Claude Desktop Configuration

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%\Claude\claude_desktop_config.json

2. Add Server Configuration

{ "mcpServers": { "industrial-mcp": { "command": "npx", "args": [ "-y", "@modelcontextprotocol/server-fetch", "http://localhost:3000/api/mcp" ] } } }

3. Restart Claude Desktop

After saving the configuration, restart Claude Desktop to load the new MCP server.

4. Test in Claude

You can now use commands like:

  • "Get the industrial system status"
  • "Show me operational data for the last 24 hours"
  • "Monitor equipment ID-12345 with history"
  • "Echo test message"

🌐 Deployment

Deploy to Vercel

# Install Vercel CLI npm install -g vercel # Deploy to Vercel vercel # Deploy to production vercel --prod

📁 Project Structure

industrial-mcp/ ├── app/ │ ├── api/ │ │ └── [transport]/ │ │ └── route.ts # Main MCP server implementation │ ├── dashboard/ │ │ └── page.tsx # Web dashboard │ ├── globals.css # Global styles │ ├── layout.tsx # Root layout │ └── page.tsx # Home page ├── package.json # Dependencies and scripts ├── tsconfig.json # TypeScript configuration ├── tailwind.config.js # Tailwind CSS configuration ├── next.config.js # Next.js configuration └── README.md # This file

🔧 API Reference

MCP Protocol Endpoints

All MCP communication happens via JSON-RPC 2.0 over HTTP:

Base URL: /api/mcp

Initialize Connection
{ "jsonrpc": "2.0", "id": 1, "method": "initialize", "params": { "protocolVersion": "2024-11-05", "capabilities": {"roots": {"listChanged": false}}, "clientInfo": {"name": "client", "version": "1.0.0"} } }
List Available Tools
{ "jsonrpc": "2.0", "id": 2, "method": "tools/list", "params": {} }
Call a Tool
{ "jsonrpc": "2.0", "id": 3, "method": "tools/call", "params": { "name": "get_system_status", "arguments": {} } }

Tool Specifications

Echo Tool
  • Name: echo
  • Parameters: message (string, required)
  • Returns: Echoed message
System Status Tool
  • Name: get_system_status
  • Parameters: None
  • Returns: System health metrics, uptime, alerts
Operational Data Tool
  • Name: get_operational_data
  • Parameters:
    • timeRange (string, optional): "1h", "24h", "7d"
    • system (string, optional): Specific system to query
  • Returns: Performance metrics and trends
Equipment Monitor Tool
  • Name: monitor_equipment
  • Parameters:
    • equipmentId (string, required): Equipment identifier
    • includeHistory (boolean, optional): Include historical data
  • Returns: Equipment status, metrics, maintenance info

🐛 Troubleshooting

Common Issues

  1. "Cannot find module '@vercel/mcp-adapter'"
    npm install @vercel/mcp-adapter
  2. "Method not allowed" errors
    • Ensure you're using POST requests for MCP protocol
    • Include proper headers: Content-Type: application/json and Accept: application/json, text/event-stream
  3. Connection refused in Claude Desktop
    • Verify the server is running on the correct port
    • Check Claude Desktop configuration file syntax
    • Restart Claude Desktop after configuration changes
  4. Build errors on deployment
    npm run build # Test build locally first npm run lint # Fix any linting issues

Debug Mode

Enable verbose logging by setting the environment variable:

DEBUG=mcp:* npm run dev

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Commit changes: git commit -m 'Add amazing feature'
  4. Push to branch: git push origin feature/amazing-feature
  5. Open a Pull Request

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

📞 Support


Made with ❤️ for Industrial Automation and AI Integration

-
security - not tested
F
license - not found
-
quality - not tested

hybrid server

The server is able to function both locally and remotely, depending on the configuration or use case.

Enables AI assistants to monitor and interact with industrial systems, providing real-time system health monitoring, operational data analytics, and equipment maintenance tracking. Built with Next.js and designed for industrial automation environments.

  1. 🚀 Live Demo
    1. ✨ Features
      1. Available MCP Tools
      2. Industrial Metrics Provided
    2. 🛠️ Quick Start
      1. Prerequisites
      2. Installation
    3. 🧪 Testing with MCP Inspector
      1. 🤖 Claude Desktop Integration
        1. 1. Edit Claude Desktop Configuration
        2. 2. Add Server Configuration
        3. 3. Restart Claude Desktop
        4. 4. Test in Claude
      2. 🌐 Deployment
        1. Deploy to Vercel
      3. 📁 Project Structure
        1. 🔧 API Reference
          1. MCP Protocol Endpoints
          2. Tool Specifications
        2. 🐛 Troubleshooting
          1. Common Issues
          2. Debug Mode
        3. 🤝 Contributing
          1. 📄 License
            1. 🙏 Acknowledgments
              1. 📞 Support

                Related MCP Servers

                • A
                  security
                  A
                  license
                  A
                  quality
                  A browser monitoring and interaction tool that enables AI applications to capture and analyze browser data through a Chrome extension, supporting functions like console monitoring, screenshots, DOM analysis, and website auditing.
                  Last updated -
                  14
                  122
                  1
                  JavaScript
                  MIT License
                • A
                  security
                  A
                  license
                  A
                  quality
                  A file monitoring server that tracks filesystem events and provides real-time notifications to AI assistants, enabling them to automatically respond to file changes without manual updates.
                  Last updated -
                  4
                  16
                  Python
                  MIT License
                • -
                  security
                  F
                  license
                  -
                  quality
                  A specialized monitoring solution that enables users to create and manage synthetic tests through natural language prompts, providing seamless integration with APIs like Splunk Synthetics.
                  Last updated -
                  TypeScript
                • A
                  security
                  A
                  license
                  A
                  quality
                  Provides seamless integration between AI assistants and Prometheus, enabling natural language interactions with your monitoring infrastructure. This server allows for effortless querying, discovery, and analysis of metrics.
                  Last updated -
                  10
                  13
                  16
                  TypeScript
                  MIT License

                View all related MCP servers

                MCP directory API

                We provide all the information about MCP servers via our MCP API.

                curl -X GET 'https://glama.ai/api/mcp/v1/servers/intecrel/industrial-mcp'

                If you have feedback or need assistance with the MCP directory API, please join our Discord server