Skip to main content
Glama

MCP Server Airflow Token

get_health

Check the operational status and health of an Apache Airflow instance to monitor deployment availability and performance.

Instructions

Get instance status

Input Schema

NameRequiredDescriptionDefault

No arguments

Input Schema (JSON Schema)

{ "properties": {}, "type": "object" }

Implementation Reference

  • The async handler function implementing the 'get_health' MCP tool. It retrieves the Airflow instance health status via the monitoring API and formats it as MCP TextContent.
    async def get_health() -> List[Union[types.TextContent, types.ImageContent, types.EmbeddedResource]]: """ Get the status of Airflow's metadatabase, triggerer and scheduler. It includes info about metadatabase and last heartbeat of scheduler and triggerer. """ response = monitoring_api.get_health() return [types.TextContent(type="text", text=str(response.to_dict()))]
  • The registration tuple for the 'get_health' tool within get_all_functions(), which provides the handler, name, description, and read-only flag to the main registration logic in src/main.py.
    return [ (get_health, "get_health", "Get instance status", True), (get_version, "get_version", "Get version information", True), ]
  • src/main.py:90-91 (registration)
    Generic tool registration loop in main.py where the 'get_health' tool (imported indirectly via get_monitoring_functions) is added to the MCP app using app.add_tool.
    for func, name, description, *_ in functions: app.add_tool(func, name=name, description=description)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/nikhil-ganage/mcp-server-airflow-token'

If you have feedback or need assistance with the MCP directory API, please join our Discord server