Skip to main content
Glama
nikhil-ganage

MCP Server Airflow Token

get_dataset

Retrieve datasets from Apache Airflow deployments by specifying their URI, enabling data access for workflow automation and analysis.

Instructions

Get a dataset by URI

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
uriYes

Implementation Reference

  • Handler function that executes the 'get_dataset' tool: fetches dataset by URI from Airflow API and returns as text content.
    async def get_dataset( uri: str, ) -> List[Union[types.TextContent, types.ImageContent, types.EmbeddedResource]]: response = dataset_api.get_dataset(uri=uri) return [types.TextContent(type="text", text=str(response.to_dict()))]
  • Registration tuple for the 'get_dataset' tool within the list returned by get_all_functions().
    (get_dataset, "get_dataset", "Get a dataset by URI", True),
  • src/main.py:10-10 (registration)
    Import of the function that provides the list of dataset tools, including get_dataset.
    from src.airflow.dataset import get_all_functions as get_dataset_functions
  • src/main.py:28-28 (registration)
    Mapping APIType.DATASET to get_dataset_functions for loading tools.
    APIType.DATASET: get_dataset_functions,
  • src/main.py:90-92 (registration)
    Code that iterates over functions (including get_dataset) and registers them as MCP tools using app.add_tool.
    for func, name, description, *_ in functions: app.add_tool(func, name=name, description=description)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/nikhil-ganage/mcp-server-airflow-token'

If you have feedback or need assistance with the MCP directory API, please join our Discord server