Skip to main content
Glama

MCP Server Airflow Token

get_dag_details

Retrieve simplified DAG information from Apache Airflow to understand workflow structure and configuration details for monitoring and management.

Instructions

Get a simplified representation of DAG

Input Schema

NameRequiredDescriptionDefault
dag_idYes
fieldsNo

Input Schema (JSON Schema)

{ "properties": { "dag_id": { "title": "Dag Id", "type": "string" }, "fields": { "anyOf": [ { "items": { "type": "string" }, "type": "array" }, { "type": "null" } ], "default": null, "title": "Fields" } }, "required": [ "dag_id" ], "type": "object" }

Implementation Reference

  • The async handler function implementing the get_dag_details tool. It accepts dag_id and optional fields, calls the Airflow DAG API's get_dag_details, and returns the response as TextContent.
    async def get_dag_details( dag_id: str, fields: Optional[List[str]] = None ) -> List[Union[types.TextContent, types.ImageContent, types.EmbeddedResource]]: # Build parameters dictionary kwargs: Dict[str, Any] = {} if fields is not None: kwargs["fields"] = fields response = dag_api.get_dag_details(dag_id=dag_id, **kwargs) return [types.TextContent(type="text", text=str(response.to_dict()))]
  • The get_all_functions returns a list of tool registrations, including the get_dag_details tool as (get_dag_details, "get_dag_details", "Get a simplified representation of DAG", True).
    def get_all_functions() -> list[tuple[Callable, str, str, bool]]: """Return list of (function, name, description, is_read_only) tuples for registration.""" return [ (get_dags, "fetch_dags", "Fetch all DAGs", True), (get_dag, "get_dag", "Get a DAG by ID", True), (get_dag_details, "get_dag_details", "Get a simplified representation of DAG", True), (get_dag_source, "get_dag_source", "Get a source code", True), (pause_dag, "pause_dag", "Pause a DAG by ID", False), (unpause_dag, "unpause_dag", "Unpause a DAG by ID", False), (get_dag_tasks, "get_dag_tasks", "Get tasks for DAG", True), (get_task, "get_task", "Get a task by ID", True), (get_tasks, "get_tasks", "Get tasks for DAG", True), (patch_dag, "patch_dag", "Update a DAG", False), (patch_dags, "patch_dags", "Update multiple DAGs", False), (delete_dag, "delete_dag", "Delete a DAG", False), (clear_task_instances, "clear_task_instances", "Clear a set of task instances", False), (set_task_instances_state, "set_task_instances_state", "Set a state of task instances", False), (reparse_dag_file, "reparse_dag_file", "Request re-parsing of a DAG file", False), ]

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/nikhil-ganage/mcp-server-airflow-token'

If you have feedback or need assistance with the MCP directory API, please join our Discord server