Skip to main content
Glama

MCP Server Airflow Token

get_config

Retrieve current Apache Airflow configuration settings to access deployment parameters and system information for workflow management.

Instructions

Get current configuration

Input Schema

NameRequiredDescriptionDefault
sectionNo

Input Schema (JSON Schema)

{ "properties": { "section": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": null, "title": "Section" } }, "type": "object" }

Implementation Reference

  • The main handler function that implements the 'get_config' tool. It accepts an optional 'section' parameter, calls the Airflow ConfigApi.get_config(), and returns the response as MCP TextContent.
    async def get_config( section: Optional[str] = None, ) -> List[Union[types.TextContent, types.ImageContent, types.EmbeddedResource]]: # Build parameters dictionary kwargs: Dict[str, Any] = {} if section is not None: kwargs["section"] = section response = config_api.get_config(**kwargs) return [types.TextContent(type="text", text=str(response.to_dict()))]
  • The get_all_functions helper that provides the registration details (function, name, description, read_only) for the get_config tool, used by main.py.
    def get_all_functions() -> list[tuple[Callable, str, str, bool]]: """Return list of (function, name, description, is_read_only) tuples for registration.""" return [ (get_config, "get_config", "Get current configuration", True), (get_value, "get_value", "Get a specific option from configuration", True), ]
  • src/main.py:23-23 (registration)
    Mapping APIType.CONFIG to get_config_functions (alias for get_all_functions from config.py) in the APITYPE_TO_FUNCTIONS dictionary used for tool registration.
    APIType.CONFIG: get_config_functions,
  • src/main.py:90-92 (registration)
    The app.add_tool call that registers the get_config tool (along with others) by iterating over the functions list.
    for func, name, description, *_ in functions: app.add_tool(func, name=name, description=description)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/nikhil-ganage/mcp-server-airflow-token'

If you have feedback or need assistance with the MCP directory API, please join our Discord server