Skip to main content
Glama

MCP Server Airflow Token

clear_task_instances

Clear specific task instances in Airflow to reset their state and allow rerunning, supporting selective clearing by date range, task IDs, and dependency relationships.

Instructions

Clear a set of task instances

Input Schema

NameRequiredDescriptionDefault
dag_idYes
dry_runNo
end_dateNo
include_downstreamNo
include_futureNo
include_parentdagNo
include_pastNo
include_subdagsNo
include_upstreamNo
reset_dag_runsNo
start_dateNo
task_idsNo

Input Schema (JSON Schema)

{ "properties": { "dag_id": { "title": "Dag Id", "type": "string" }, "dry_run": { "anyOf": [ { "type": "boolean" }, { "type": "null" } ], "default": null, "title": "Dry Run" }, "end_date": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": null, "title": "End Date" }, "include_downstream": { "anyOf": [ { "type": "boolean" }, { "type": "null" } ], "default": null, "title": "Include Downstream" }, "include_future": { "anyOf": [ { "type": "boolean" }, { "type": "null" } ], "default": null, "title": "Include Future" }, "include_parentdag": { "anyOf": [ { "type": "boolean" }, { "type": "null" } ], "default": null, "title": "Include Parentdag" }, "include_past": { "anyOf": [ { "type": "boolean" }, { "type": "null" } ], "default": null, "title": "Include Past" }, "include_subdags": { "anyOf": [ { "type": "boolean" }, { "type": "null" } ], "default": null, "title": "Include Subdags" }, "include_upstream": { "anyOf": [ { "type": "boolean" }, { "type": "null" } ], "default": null, "title": "Include Upstream" }, "reset_dag_runs": { "anyOf": [ { "type": "boolean" }, { "type": "null" } ], "default": null, "title": "Reset Dag Runs" }, "start_date": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": null, "title": "Start Date" }, "task_ids": { "anyOf": [ { "items": { "type": "string" }, "type": "array" }, { "type": "null" } ], "default": null, "title": "Task Ids" } }, "required": [ "dag_id" ], "type": "object" }

Implementation Reference

  • Function that returns the list of all MCP tools for registration, including the clear_task_instances tool tuple.
    def get_all_functions() -> list[tuple[Callable, str, str, bool]]: """Return list of (function, name, description, is_read_only) tuples for registration.""" return [ (get_dags, "fetch_dags", "Fetch all DAGs", True), (get_dag, "get_dag", "Get a DAG by ID", True), (get_dag_details, "get_dag_details", "Get a simplified representation of DAG", True), (get_dag_source, "get_dag_source", "Get a source code", True), (pause_dag, "pause_dag", "Pause a DAG by ID", False), (unpause_dag, "unpause_dag", "Unpause a DAG by ID", False), (get_dag_tasks, "get_dag_tasks", "Get tasks for DAG", True), (get_task, "get_task", "Get a task by ID", True), (get_tasks, "get_tasks", "Get tasks for DAG", True), (patch_dag, "patch_dag", "Update a DAG", False), (patch_dags, "patch_dags", "Update multiple DAGs", False), (delete_dag, "delete_dag", "Delete a DAG", False), (clear_task_instances, "clear_task_instances", "Clear a set of task instances", False), (set_task_instances_state, "set_task_instances_state", "Set a state of task instances", False), (reparse_dag_file, "reparse_dag_file", "Request re-parsing of a DAG file", False), ]
  • The core implementation of the clear_task_instances tool. It collects optional parameters into a dictionary, instantiates the ClearTaskInstances model, calls the Airflow DAG API to clear the task instances, and returns the response as text content.
    async def clear_task_instances( dag_id: str, task_ids: Optional[List[str]] = None, start_date: Optional[str] = None, end_date: Optional[str] = None, include_subdags: Optional[bool] = None, include_parentdag: Optional[bool] = None, include_upstream: Optional[bool] = None, include_downstream: Optional[bool] = None, include_future: Optional[bool] = None, include_past: Optional[bool] = None, dry_run: Optional[bool] = None, reset_dag_runs: Optional[bool] = None, ) -> List[Union[types.TextContent, types.ImageContent, types.EmbeddedResource]]: clear_request = {} if task_ids is not None: clear_request["task_ids"] = task_ids if start_date is not None: clear_request["start_date"] = start_date if end_date is not None: clear_request["end_date"] = end_date if include_subdags is not None: clear_request["include_subdags"] = include_subdags if include_parentdag is not None: clear_request["include_parentdag"] = include_parentdag if include_upstream is not None: clear_request["include_upstream"] = include_upstream if include_downstream is not None: clear_request["include_downstream"] = include_downstream if include_future is not None: clear_request["include_future"] = include_future if include_past is not None: clear_request["include_past"] = include_past if dry_run is not None: clear_request["dry_run"] = dry_run if reset_dag_runs is not None: clear_request["reset_dag_runs"] = reset_dag_runs clear_task_instances = ClearTaskInstances(**clear_request) response = dag_api.post_clear_task_instances(dag_id=dag_id, clear_task_instances=clear_task_instances) return [types.TextContent(type="text", text=str(response.to_dict()))]
  • Import of the ClearTaskInstances Pydantic model used for input schema validation and serialization in the clear_task_instances handler.
    from airflow_client.client.model.clear_task_instances import ClearTaskInstances

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/nikhil-ganage/mcp-server-airflow-token'

If you have feedback or need assistance with the MCP directory API, please join our Discord server