Skip to main content
Glama

mcp-jenkins

MCP 詹金斯

PyPI 版本PyPI - 下载 执照

模型上下文协议 (MCP) 是一个开源实现,它遵循 Anthropic 的 MCP 规范,将 Jenkins 与 AI 语言模型连接起来。该项目支持与 Jenkins 工具进行安全的、上下文相关的 AI 交互,同时确保数据隐私和安全。

光标演示

光标演示

设置指南

安装

选择以下安装方法之一:

# Using uv (recommended) pip install uv uvx mcp-jenkins # Using pip pip install mcp-jenkins # Using Smithery npx -y @smithery/cli@latest install @lanbaoshen/mcp-jenkins --client claude

配置和使用

光标
  1. 打开游标设置
  2. 导航至 MCP
  3. 点击“+添加新的全局 MCP 服务器”

这将使用您的 MCP 服务器配置创建或编辑 ~/.cursor/mcp.json 文件。

{ "mcpServers": { "mcp-jenkins": { "command": "uvx", "args": [ "mcp-jenkins", "--jenkins-url=xxx", "--jenkins-username=xxx", "--jenkins-password=xxx" ] } } }
行参数
# Stdio Mode uvx mcp-jenkins --jenkins-url xxx --jenkins-username xxx --jenkins-password xxx # SSE Mode uvx mcp-jenkins --jenkins-url xxx --jenkins-username xxx --jenkins-password xxx --transport sse --port 9887
自动生成

安装自动生成:

pip install "autogen-ext[azure,ollama,openai,mcp]" autogen-chat

运行python脚本:

import asyncio from autogen_ext.tools.mcp import StdioMcpToolAdapter, StdioServerParams from autogen_agentchat.agents import AssistantAgent from autogen_agentchat.ui import Console from autogen_core import CancellationToken async def main() -> None: # Create server params for the remote MCP service server_params = StdioServerParams( command='uvx', args=[ 'mcp-jenkins', '--jenkins-username', 'xxx', '--jenkins-password', 'xxx', '--jenkins-url', 'xxx' ], ) # Get the translation tool from the server adapter = await StdioMcpToolAdapter.from_server_params(server_params, 'get_all_jobs') # Create an agent that can use the translation tool agent = AssistantAgent( name='jenkins_assistant', model_client=[Replace_with_your_model_client], tools=[adapter], ) # Let the agent translate some text await Console( agent.run_stream(task='Get all jobs', cancellation_token=CancellationToken()) ) if __name__ == "__main__": asyncio.run(main())

可用工具

工具描述
获取所有作业获取所有职位
获取作业配置获取作业配置
搜索职位按特定领域搜索职位
获取运行构建开始运行构建
获取构建信息获取构建信息
获取工作信息获取工作信息
构建作业使用参数构建作业
获取构建日志获取构建日志
获取所有节点获取节点
获取节点配置获取节点的配置
获取所有队列项目获取所有队列项
获取队列项获取队列项目信息
取消队列项目取消队列项目

开发与调试

# Using MCP Inspector # For installed package npx @modelcontextprotocol/inspector uvx mcp-jenkins --jenkins-url xxx --jenkins-username xxx --jenkins-password xxx # For local development version npx @modelcontextprotocol/inspector uv --directory /path/to/your/mcp-jenkins run mcp-jenkins --jenkins-url xxx --jenkins-username xxx --jenkins-password xxx

预提交钩子

# Install Dependency uv sync --all-extras --dev pre-commit install # Manually execute pre-commit run --all-files

犹他州

# Install Dependency uv sync --all-extras --dev # Execute UT uv run pytest --cov=mcp_jenkins

执照

采用 MIT 许可 - 请参阅LICENSE文件。这不是 Jenkins 官方产品。

-
security - not tested
A
license - permissive license
-
quality - not tested

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

模型上下文协议 (MCP) Jenkins 集成是一个开源实现,它遵循 Anthropic 的 MCP 规范,将 Jenkins 与 AI 语言模型连接起来。该项目支持与 Jenkins 工具进行安全的、上下文相关的 AI 交互,同时确保数据隐私和安全。

  1. 光标演示
    1. 设置指南
      1. 安装
      2. 配置和使用
    2. 可用工具
      1. 开发与调试
        1. 预提交钩子
        2. 犹他州
      2. 执照

        Related MCP Servers

        • -
          security
          F
          license
          -
          quality
          Facilitates interaction and context sharing between AI models using the standardized Model Context Protocol (MCP) with features like interoperability, scalability, security, and flexibility across diverse AI systems.
          Last updated -
          1
          Python
        • A
          security
          A
          license
          A
          quality
          Model Context Protocol (MCP) is a new, standardized protocol for managing context between large language models (LLMs) and external systems. In this repository, we provide an installer as well as an MCP Server for Upstash Developer API's.
          Last updated -
          16
          58
          27
          TypeScript
          MIT License
          • Linux
          • Apple
        • -
          security
          -
          license
          -
          quality
          An open-source implementation of the Model Context Protocol (MCP) that bridges AI agents with enterprise systems, enabling secure access to real-world data and capabilities.
          Last updated -
          1
          Python
          Apache 2.0
        • A
          security
          F
          license
          A
          quality
          An all-in-one Model Context Protocol (MCP) server that connects your coding AI to numerous databases, data warehouses, data pipelines, and cloud services, streamlining development workflow through seamless integrations.
          Last updated -
          Python
          • Apple
          • Linux

        View all related MCP servers

        MCP directory API

        We provide all the information about MCP servers via our MCP API.

        curl -X GET 'https://glama.ai/api/mcp/v1/servers/lanbaoshen/mcp-jenkins'

        If you have feedback or need assistance with the MCP directory API, please join our Discord server