Skip to main content
Glama

submit_protein_cofolding_workflow

Submit protein-ligand cofolding workflows to predict 3D structures and calculate binding affinity using computational chemistry models.

Instructions

Submits a protein cofolding workflow to the API.

Args: initial_protein_sequences: JSON string list of protein sequences (amino acid strings) to cofold initial_smiles_list: JSON string list of ligand SMILES strings to include in cofolding. None for protein-only ligand_binding_affinity_index: Index of ligand in initial_smiles_list for binding affinity calculation (e.g., "0"). None skips affinity use_msa_server: Whether to use MSA (Multiple Sequence Alignment) server for improved accuracy use_potentials: Whether to use statistical potentials in the calculation compute_strain: Whether to compute the strain of the pose (if pose_refinement is enabled) do_pose_refinement: Whether to optimize non-rotatable bonds in output poses name: Workflow name for identification and tracking model: Cofolding model to use (defaults to stjames.CofoldingModel.BOLTZ_2.value) folder_uuid: UUID of folder to organize this workflow. None uses default folder. max_credits: Maximum credits to spend on this calculation. None for no limit.

Returns: Workflow object representing the submitted workflow

Example: # Torcetrapib Cofolding result = submit_protein_cofolding_workflow( initial_protein_sequences='["ASKGTSHEAGIVCRITKPALLVLNHETAKVIQTAFQRASYPDITGEKAMMLLGQVKYGLHNIQISHLSIASSQVELVEAKSIDVSIQDVSVVFKGTLKYGYTTAWWLGIDQSIDFEIDSAIDLQINTQLTADSGRVRTDAPDCYLSFHKLLLHLQGEREPGWIKQLFTNFISFTLKLVLKGQICKEINVISNIMADFVQTRAASILSDGDIGVDISLTGDPVITASYLESHHKGHFIYKDVSEDLPLPTFSPTLLGDSRMLYFWFSERVFHSLAKVAFQDGRLMLSLMGDEFKAVLETWGFNTNQEIFQEVVGGFPSQAQVTVHCLKMPKISCQNKGVVVDSSVMVKFLFPRPDQQHSVAYTFEEDIVTTVQASYSKKKLFLSLLDFQITPKTVSNLTESSSESIQSFLQSMITAVGIPEVMSRLEVVFTALMNSKGVSLFDIINPEIITRDGFLLLQMDFGFPEHLLVDFLQSLS"]', initial_smiles_list='["CCOC(=O)N1c2ccc(C(F)(F)F)cc2C@@HC[C@H]1CC"]', ligand_binding_affinity_index="0", name="Torcetrapib Cofolding", do_pose_refinement=True, compute_strain=True )

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
initial_protein_sequencesYesJSON string list of protein sequences for cofolding (e.g., '["MKLLV...", "MAHQR..."]')
initial_smiles_listNoJSON string list of SMILES for ligands to include in cofolding (e.g., '["CCO", "CC(=O)O"]'). Empty for protein-only
ligand_binding_affinity_indexNoIndex of ligand for binding affinity computation (e.g., '0'). Empty for no affinity calculation
use_msa_serverNoWhether to use multiple sequence alignment server for better structure prediction
use_potentialsNoWhether to include additional potentials in the calculation
compute_strainNoWhether to compute the strain of the pose (if pose_refinement is enabled)
do_pose_refinementNoWhether to optimize non-rotatable bonds in output poses
nameNoWorkflow name for identification and trackingCofolding Workflow
modelNoStructure prediction model to use (e.g., 'boltz_2', 'alphafold3')boltz_2
folder_uuidNoUUID of folder to organize this workflow. Empty string uses default folder
max_creditsNoMaximum credits to spend on this calculation. 0 for no limit

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/k-yenko/rowan-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server