Skip to main content
Glama

submit_msa_workflow

Generate multiple sequence alignments for protein sequences to support structure prediction tools like AlphaFold2/ColabFold, Chai-1, and Boltz-1, enabling evolutionary analysis and homology modeling.

Instructions

Submit a multiple sequence alignment (MSA) workflow using Rowan v2 API.

Args: initial_protein_sequences: JSON string list of protein sequences (amino acid strings) output_formats: JSON string list of desired output formats. Valid options: 'colabfold', 'chai', 'boltz' name: Workflow name for identification and tracking folder_uuid: UUID of folder to organize this workflow. Empty string uses default folder. max_credits: Maximum credits to spend on this calculation. 0 for no limit.

Generates multiple sequence alignments for protein sequences using advanced alignment algorithms optimized for structure prediction tools. Useful for:

  • Protein structure prediction with AlphaFold2/ColabFold

  • Structure prediction with Chai-1

  • Structure prediction with Boltz-1

  • Evolutionary analysis and homology modeling

Valid output formats:

  • 'colabfold': MSA format for ColabFold/AlphaFold2 structure prediction

  • 'chai': MSA format optimized for Chai-1 structure prediction

  • 'boltz': MSA format optimized for Boltz-1 structure prediction

Returns: Workflow object representing the submitted workflow

Examples: # MSA for ColabFold structure prediction result = submit_msa_workflow( initial_protein_sequences='["MKLLVLGLLLAAAVPGTRAAQMSFKLIGTEYFTLQIRGRERFEMFRELN"]', output_formats='["colabfold"]', name="Insulin MSA for ColabFold" )

# MSA for multiple prediction tools result = submit_msa_workflow( initial_protein_sequences='["MKTAYIAKQRQISFVKSHFSRQ"]', output_formats='["colabfold", "chai", "boltz"]', name="Multi-tool MSA" ) # MSA for Chai-1 structure prediction result = submit_msa_workflow( initial_protein_sequences='["GSTLGRIADRDLLELDTLAAKVPSDGAKDLVTDIVNRQIYDG"]', output_formats='["chai"]', name="Chai-1 MSA" )

This workflow can take 10-30 minutes depending on sequence length.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
initial_protein_sequencesYesJSON string list of protein sequences (e.g., '["MKLLV...", "MAHQR..."]')
output_formatsYesJSON string list of output formats - must be 'colabfold', 'chai', or 'boltz' (e.g., '["colabfold", "chai"]')
nameNoWorkflow name for identification and trackingMSA Workflow
folder_uuidNoUUID of folder to organize this workflow. Empty string uses default folder
max_creditsNoMaximum credits to spend on this calculation. 0 for no limit

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/k-yenko/rowan-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server