Skip to main content
Glama

submit_admet_workflow

Predict drug-like properties and pharmacokinetic behavior for molecules using ADMET-AI to assess absorption, distribution, metabolism, excretion, and toxicity early in drug discovery.

Instructions

Submit an ADMET workflow to predict drug-like properties using ADMET-AI.

Args: initial_molecule: SMILES string representing the molecule name: Workflow name for identification and tracking folder_uuid: UUID of folder to organize this workflow. Empty string uses default folder. max_credits: Maximum credits to spend on this calculation. 0 for no limit.

ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) predictions help assess drug-likeness and pharmacokinetic properties of molecules early in the drug discovery process.

Uses the ADMET-AI model to predict various pharmacokinetic properties automatically.

Returns: Workflow object representing the submitted workflow

Examples: # Predict ADMET properties for aspirin result = submit_admet_workflow( initial_molecule="CC(=O)Nc1ccc(O)cc1", name="Aspirin ADMET" )

# Predict ADMET properties for caffeine result = submit_admet_workflow( initial_molecule="CN1C=NC2=C1C(=O)N(C(=O)N2C)C", name="Caffeine ADMET" )

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
initial_moleculeYesSMILES string of the molecule for ADMET property prediction
nameNoWorkflow name for identification and trackingADMET Workflow
folder_uuidNoUUID of folder to organize this workflow. Empty string uses default folder
max_creditsNoMaximum credits to spend on this calculation. 0 for no limit

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/k-yenko/rowan-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server