Skip to main content
Glama

list_common_attributes

Retrieve commonly used attributes for a specific dataset from BioMart databases. Streamlines dataset exploration by providing essential attributes in a CSV format for easy analysis and integration.

Instructions

Lists commonly used attributes available for a given dataset. This function returns only the most frequently used attributes (defined in COMMON_ATTRIBUTES) to avoid overwhelming the model with too many options. For a complete list, use list_all_attributes. Args: mart (str): The mart identifier (e.g., "ENSEMBL_MART_ENSEMBL") dataset (str): The dataset identifier (e.g., "hsapiens_gene_ensembl") Returns: str: CSV-formatted table of common attributes with their display names and descriptions. Example: list_common_attributes("ENSEMBL_MART_ENSEMBL", "hsapiens_gene_ensembl") >>> "name,display_name,description ensembl_gene_id,Gene stable ID,Ensembl stable ID for the gene external_gene_name,Gene name,The gene name ..."

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
datasetYes
martYes

Implementation Reference

  • The handler function for the 'list_common_attributes' tool. It connects to the Biomart server, lists all attributes for the dataset, filters to common ones defined in COMMON_ATTRIBUTES, and returns as CSV.
    @mcp.tool() def list_common_attributes(mart: str, dataset: str): """ Lists commonly used attributes available for a given dataset. This function returns only the most frequently used attributes (defined in COMMON_ATTRIBUTES) to avoid overwhelming the model with too many options. For a complete list, use list_all_attributes. Args: mart (str): The mart identifier (e.g., "ENSEMBL_MART_ENSEMBL") dataset (str): The dataset identifier (e.g., "hsapiens_gene_ensembl") Returns: str: CSV-formatted table of common attributes with their display names and descriptions. Example: list_common_attributes("ENSEMBL_MART_ENSEMBL", "hsapiens_gene_ensembl") >>> "name,display_name,description ensembl_gene_id,Gene stable ID,Ensembl stable ID for the gene external_gene_name,Gene name,The gene name ..." """ server = pybiomart.Server(host=DEFAULT_HOST) df = server[mart][dataset].list_attributes() df = df[df["name"].isin(COMMON_ATTRIBUTES)] return df.to_csv(index=False).replace("\r", "")
  • biomart-mcp.py:120-120 (registration)
    The @mcp.tool() decorator registers the list_common_attributes function as an MCP tool.
    @mcp.tool()
  • Predefined list of common attributes used by the list_common_attributes handler to filter the full attribute list.
    COMMON_ATTRIBUTES = [ "ensembl_gene_id", "external_gene_name", "hgnc_symbol", "hgnc_id", "gene_biotype", "ensembl_transcript_id", "ensembl_peptide_id", "ensembl_exon_id", "description", "chromosome_name", "start_position", "end_position", "strand", "band", "transcript_start", "transcript_end", "transcription_start_site", "transcript_length", ]
  • Function signature defining input parameters with type annotations, which serves as the input schema for the tool.
    def list_common_attributes(mart: str, dataset: str):

Other Tools

Related Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jzinno/biomart-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server