Skip to main content
Glama

Statsource MCP Server

by jamie7893
Dockerfile1.16 kB
# Use an official Python runtime as a parent image FROM python:3.11-slim # Set the working directory in the container WORKDIR /app # Copy the requirements file into the container at /app COPY requirements.txt ./ # Install any needed packages specified in requirements.txt # Use --no-cache-dir to reduce image size RUN pip install --no-cache-dir -r requirements.txt # Copy the rest of the application code into the container at /app # Copy setup.py and MANIFEST.in for installation COPY setup.py MANIFEST.in ./ COPY README.md ./ # Copy the main package directory COPY mcp_server_stats ./mcp_server_stats # Install the project itself RUN pip install --no-cache-dir . # Make port 80 available to the world outside this container (if your server listens on a port - adjust if needed) # EXPOSE 80 # MCP usually communicates over stdin/stdout, so this might not be necessary # Define environment variables (optional, can be overridden at runtime) # ENV API_KEY="your_default_api_key" # ENV DB_CONNECTION_STRING="your_default_db_string" # ENV DB_SOURCE_TYPE="database" # Run the application when the container launches CMD ["python", "-m", "mcp_server_stats"]

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jamie7893/statsource-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server