# MemoryGraph Scaling Features - Implementation Workplan
> **STATUS**: Reference Document - Not Started
> **CONSOLIDATED**: Summary moved to `/docs/WORKPLAN.md` Phase 3.3
> **IMPLEMENTATION**: Deferred until user demand (10k+ memories or feature requests)
This document contains detailed implementation plans for future scaling features. It remains as a reference for when these features are needed.
**Active Workplan**: See `/docs/WORKPLAN.md` for current priorities.
---
## Pre-Implementation Analysis
### Architecture Considerations
Before implementing, note these critical points:
1. **Embedding Dependency**: Semantic clustering requires an embedding service (OpenAI, local models, etc.). This adds external dependencies and API costs. Consider making this optional/pluggable.
2. **Backend Complexity**: You have 3 backends (SQLite, Neo4j, Memgraph). Each feature must work across all, which significantly increases implementation complexity. Consider:
- Implementing for SQLite first (your default)
- Making advanced features (semantic clustering) optional for lighter backends
- Using feature flags to enable/disable based on backend capabilities
3. **Breaking Changes Risk**: Adding fields like `last_accessed`, `usage_count`, `importance_decay` requires schema migrations. Existing databases will need migration scripts.
4. **Consolidation Complexity**: Merging memories while preserving relationships is non-trivial. What happens when Memory A (with 10 relationships) and Memory B (with 8 relationships) consolidate? Do you:
- Merge all relationships to the consolidated memory?
- Keep originals and add a "CONSOLIDATED_FROM" relationship?
- Delete originals entirely?
5. **Performance Trade-offs**: Background tasks, caching, and async operations add complexity. The current codebase is already async, but adding background workers may require a task queue (Celery, Dramatiq, etc.).
**Recommendation**: Implement features in dependency order. Start with foundational tracking (access patterns), then decay/pruning (uses tracking), then consolidation (uses both), and finally semantic clustering (most complex).
---
## Feature 1: Access Pattern Tracking (Foundation)
This feature is prerequisite for decay-based pruning and enables analytics.
### 1.1 Database Schema Updates
- [ ] Add tracking fields to Memory model in `/src/memorygraph/models.py`:
- `last_accessed: datetime` - timestamp of last retrieval
- `access_count: int` - total number of accesses
- `created_at: datetime` - when memory was created (if not exists)
- `is_pinned: bool` - flag to prevent decay (default: False)
- [ ] Create SQLite migration script in `/migrations/001_add_access_tracking.sql`:
- ALTER TABLE to add new columns with defaults
- Backfill `created_at` with current timestamp for existing records
- Backfill `last_accessed` = `created_at` for existing records
- Set `access_count` = 0, `is_pinned` = False for existing records
- [ ] Update SQLite backend (`/src/memorygraph/backends/sqlite_fallback.py`):
- Modify `_ensure_tables()` to include new columns in CREATE TABLE
- Add migration check/execution on initialization
- [ ] Update Neo4j backend (`/src/memorygraph/backends/neo4j_backend.py`):
- Add Cypher migration to add properties to existing Memory nodes
- Update node creation queries to include new properties
### 1.2 Tracking Implementation
- [ ] Update `get_memory()` in all backends to:
- Increment `access_count`
- Update `last_accessed` to current timestamp
- Use async UPDATE query (don't block retrieval)
- [ ] Update `search_memories()` in all backends to:
- Track access for each returned memory
- Batch update access stats for efficiency
- [ ] Add `pin_memory(memory_id: str)` tool to `/src/memorygraph/server.py`:
- Set `is_pinned = True` for specified memory
- Document that pinned memories won't decay
- [ ] Add `unpin_memory(memory_id: str)` tool (standard/full feature sets)
### 1.3 Testing
- [ ] Create `/tests/test_access_tracking.py`:
- Test access_count increments on retrieval
- Test last_accessed updates
- Test pinning prevents later operations (verify in decay tests)
- Test migration with existing data
- Test across all backends (parametrize)
---
## Feature 2: Decay-Based Pruning
Depends on: Feature 1 (Access Pattern Tracking)
### 2.1 Decay Configuration
- [ ] Create `/src/memorygraph/config/decay_config.py`:
- `DecayConfig` dataclass with fields:
- `enabled: bool` (default: True)
- `decay_rate_per_day: float` (default: 0.01, i.e., 1% per day)
- `min_importance_threshold: float` (default: 0.1, archive below this)
- `decay_interval_hours: int` (default: 24, how often to run decay)
- `memory_type_multipliers: dict[str, float]` (e.g., {"error": 0.5, "solution": 0.8})
- `archive_instead_of_delete: bool` (default: True)
- Load from environment variables or config file
- [ ] Add decay config to server initialization in `/src/memorygraph/server.py`
### 2.2 Decay Calculation Logic
- [ ] Create `/src/memorygraph/decay/decay_engine.py`:
- `calculate_decayed_importance(memory: Memory, config: DecayConfig) -> float`:
- Get days since `last_accessed`
- Apply exponential decay: `importance * (1 - decay_rate) ^ days_since_access`
- Apply memory type multiplier
- Return 0 if `is_pinned = True` (no decay)
- `should_archive(decayed_importance: float, config: DecayConfig) -> bool`:
- Return True if below threshold
### 2.3 Archive System
- [ ] Add `archived_at: datetime | None` field to Memory model in `/src/memorygraph/models.py`
- [ ] Create SQLite migration `/migrations/002_add_archived_at.sql`
- [ ] Update all search/retrieval operations to:
- Filter out archived memories by default (`WHERE archived_at IS NULL`)
- Add `include_archived: bool` parameter to search functions
- [ ] Add `archive_memory(memory_id: str)` tool to server (standard feature set)
- [ ] Add `unarchive_memory(memory_id: str)` tool to server (standard feature set)
### 2.4 Background Decay Process
- [ ] Create `/src/memorygraph/decay/decay_scheduler.py`:
- `DecayScheduler` class with:
- `start()` method to begin background task
- `stop()` method to gracefully shutdown
- Use `asyncio.create_task()` for background loop
- Run decay process every `decay_interval_hours`
- [ ] Implement `run_decay_process(database, config)` in decay_scheduler.py:
- Fetch all non-pinned, non-archived memories
- For each, calculate decayed importance
- Update importance in database (batch UPDATE)
- Archive memories below threshold
- Log statistics (memories processed, archived count)
- [ ] Integrate DecayScheduler into server lifecycle:
- Start scheduler in server initialization
- Stop scheduler on shutdown
- Make optional via config flag
### 2.5 Manual Decay Operations
- [ ] Add `run_decay_now()` tool to server (full feature set):
- Manually trigger decay process
- Return statistics about decay run
- [ ] Add `get_decay_statistics()` tool (full feature set):
- Return counts of archived, low-importance, pinned memories
- Return next scheduled decay time
### 2.6 Testing
- [ ] Create `/tests/test_decay.py`:
- Test decay calculation with different time deltas
- Test pinned memories don't decay
- Test memory type multipliers
- Test archiving below threshold
- Test archive filtering in searches
- Test background scheduler (use mock time)
- Test manual decay trigger
- Test across all backends
---
## Feature 3: Memory Consolidation
Depends on: Feature 1 (Access Pattern Tracking), Feature 2 (Decay-Based Pruning)
### 3.1 Consolidation Strategy Design
- [ ] Create `/src/memorygraph/consolidation/strategy.py`:
- `ConsolidationStrategy` enum:
- `MERGE_AND_DELETE` - Create consolidated memory, delete originals
- `MERGE_AND_ARCHIVE` - Create consolidated memory, archive originals
- `MERGE_AND_LINK` - Create consolidated memory, keep originals with CONSOLIDATED_INTO relationship
- `ConsolidationConfig` dataclass:
- `strategy: ConsolidationStrategy`
- `similarity_threshold: float` (for automatic consolidation)
- `max_memories_per_consolidation: int` (default: 5)
- `preserve_relationships: bool` (default: True)
### 3.2 Consolidation Identification
- [ ] Create `/src/memorygraph/consolidation/identifier.py`:
- `identify_consolidation_candidates(database, config) -> list[list[str]]`:
- Find memories with similar titles/tags (keyword-based)
- Find memories with many SIMILAR_TO relationships
- Find memories in same time window with same type
- Return groups of memory IDs that could be consolidated
- Use graph analysis (NetworkX for SQLite, Cypher for Neo4j)
### 3.3 Consolidation Execution
- [ ] Create `/src/memorygraph/consolidation/consolidator.py`:
- `consolidate_memories(memory_ids: list[str], database, config) -> str`:
- Fetch all memories to consolidate
- Generate consolidated content (concatenate or summarize)
- Create new consolidated memory with:
- `title`: "Consolidated: {common theme}"
- `content`: merged content
- `type`: most common type among originals
- `tags`: union of all tags
- `importance`: max importance among originals
- `summary`: "Consolidation of {count} memories"
- Handle relationships based on strategy:
- If MERGE_AND_DELETE/ARCHIVE: redirect all relationships to consolidated memory
- If MERGE_AND_LINK: add CONSOLIDATED_INTO relationships from originals to new
- Archive or delete originals based on strategy
- Return consolidated memory ID
### 3.4 Relationship Preservation
- [ ] Update consolidator.py to handle relationship migration:
- `migrate_relationships(original_ids: list[str], consolidated_id: str, database)`:
- For each original memory, get all relationships (incoming and outgoing)
- Create equivalent relationships on consolidated memory
- Deduplicate relationships (multiple originals may have same relationships)
- Preserve relationship metadata (confidence, strength, context)
### 3.5 Tools for Consolidation
- [ ] Add `consolidate_memories(memory_ids: list[str], strategy: str)` tool (full feature set):
- Manual consolidation of specified memories
- Validate memory_ids exist
- Execute consolidation
- Return new consolidated memory ID
- [ ] Add `find_consolidation_candidates()` tool (full feature set):
- Return suggested groups for consolidation
- Include reasoning (e.g., "5 memories about 'authentication errors'")
- [ ] Add `auto_consolidate(min_group_size: int)` tool (full feature set):
- Automatically consolidate identified candidate groups
- Require min_group_size to avoid over-consolidation
- Return statistics
### 3.6 Testing
- [ ] Create `/tests/test_consolidation.py`:
- Test candidate identification
- Test consolidation with MERGE_AND_DELETE strategy
- Test consolidation with MERGE_AND_ARCHIVE strategy
- Test consolidation with MERGE_AND_LINK strategy
- Test relationship preservation and migration
- Test deduplication of relationships
- Test consolidated memory properties
- Test across all backends
---
## Feature 4: Semantic Clustering
Depends on: Feature 1 (foundational), optional dependency on external embedding service
### 4.1 Embedding Infrastructure
- [ ] Create `/src/memorygraph/embeddings/embedding_provider.py`:
- `EmbeddingProvider` abstract base class:
- `async def embed(text: str) -> list[float]`
- `async def embed_batch(texts: list[str]) -> list[list[float]]`
- `dimension: int` property
- `OpenAIEmbeddingProvider` implementation (uses OpenAI API)
- `LocalEmbeddingProvider` implementation (uses sentence-transformers)
- `NoOpEmbeddingProvider` (returns None, for when feature is disabled)
- [ ] Add embedding dependencies to `/pyproject.toml`:
- Make optional: `[tool.poetry.extras]` -> `embeddings = ["openai", "sentence-transformers"]`
- Document that semantic clustering requires extras
- [ ] Add `embedding_vector: list[float] | None` to Memory model
- [ ] Create migration `/migrations/003_add_embedding_vector.sql` (SQLite):
- Add TEXT column for JSON-serialized embedding
- For Neo4j: add embedding property (array type)
### 4.2 Embedding Generation
- [ ] Create `/src/memorygraph/embeddings/embedding_manager.py`:
- `EmbeddingManager` class:
- `async def generate_embedding(memory: Memory) -> list[float]`:
- Concatenate title + summary + content
- Call provider.embed()
- Cache result
- `async def generate_embeddings_batch(memories: list[Memory])`:
- Batch processing for efficiency
- `async def update_missing_embeddings(database)`:
- Find memories without embeddings
- Generate and store embeddings
- [ ] Update `store_memory()` in all backends to:
- Generate embedding when creating memory (if provider configured)
- Store embedding in database
### 4.3 Clustering Algorithm
- [ ] Create `/src/memorygraph/clustering/clusterer.py`:
- `SemanticClusterer` class:
- `cluster_memories(memories: list[Memory], n_clusters: int) -> dict[int, list[Memory]]`:
- Use K-means clustering on embedding vectors
- Fallback to graph-based clustering if embeddings unavailable
- `find_cluster_representatives(cluster: list[Memory]) -> list[Memory]`:
- Return most central memories (highest avg similarity to cluster members)
- Or highest importance memories
- Configurable strategy
- [ ] Implement graph-based fallback clustering:
- `graph_based_cluster(database, n_clusters: int)`:
- Use community detection algorithms (Louvain, Label Propagation)
- Available in NetworkX for SQLite backend
- Use Cypher procedures for Neo4j
### 4.4 Cluster-Aware Retrieval
- [ ] Create `/src/memorygraph/intelligence/cluster_retrieval.py`:
- `ClusterAwareRetrieval` class:
- `search_with_clustering(query: str, max_results: int) -> list[Memory]`:
- Cluster all memories
- Find most relevant cluster to query (using embedding similarity)
- Return representatives from top N clusters
- Expand to more memories if needed
- [ ] Update `search_memories()` to support clustering mode:
- Add `use_clustering: bool` parameter
- Add `cluster_mode: str` parameter ("representatives" | "full_clusters")
### 4.5 Tools for Clustering
- [ ] Add `cluster_memories(n_clusters: int)` tool (full feature set):
- Return cluster assignments
- Return cluster summaries (common themes)
- [ ] Add `get_cluster_representatives(cluster_id: int)` tool (full feature set)
- [ ] Add `search_with_clustering(query: str, max_clusters: int)` tool (full feature set):
- Cluster-aware search
- Return representative memories from relevant clusters
- [ ] Add `generate_missing_embeddings()` tool (full feature set):
- Backfill embeddings for existing memories
- Return progress statistics
### 4.6 Testing
- [ ] Create `/tests/test_embeddings.py`:
- Test embedding generation (with mock provider)
- Test batch embedding
- Test missing embeddings detection and backfill
- Test OpenAI provider (integration test, conditional on API key)
- Test local provider (if sentence-transformers installed)
- [ ] Create `/tests/test_clustering.py`:
- Test K-means clustering with synthetic embeddings
- Test graph-based clustering fallback
- Test cluster representative selection
- Test cluster-aware search
- Test across backends
---
## Feature 5: Progressive Loading
Depends on: None (foundational performance feature)
### 5.1 Lazy Loading Architecture
- [ ] Create `/src/memorygraph/models.py` changes:
- Add `MemorySummary` model (lightweight):
- `id: str`
- `title: str`
- `type: str`
- `importance: float`
- `created_at: datetime`
- `summary: str | None`
- Add `MemoryDetail` model (extends MemorySummary):
- Adds `content: str`, `tags`, `context`, `relationships`
### 5.2 Pagination Support
- [ ] Create `/src/memorygraph/pagination/paginator.py`:
- `PaginationParams` dataclass:
- `page: int` (default: 1)
- `page_size: int` (default: 20)
- `cursor: str | None` (for cursor-based pagination)
- `PaginatedResult[T]` generic class:
- `items: list[T]`
- `total_count: int`
- `page: int`
- `page_size: int`
- `has_next_page: bool`
- `next_cursor: str | None`
- [ ] Update all backends to support pagination:
- Add `LIMIT` and `OFFSET` to SQLite queries
- Use `SKIP` and `LIMIT` in Neo4j Cypher
- Add cursor-based pagination using `last_id` for SQLite
### 5.3 Progressive Search Implementation
- [ ] Create `/src/memorygraph/intelligence/progressive_search.py`:
- `ProgressiveSearch` class:
- `async def search_minimal(query: str) -> list[MemorySummary]`:
- Return only summaries, no full content
- Fast initial results
- `async def expand_memory(memory_id: str) -> MemoryDetail`:
- Load full memory with relationships on demand
- `async def search_with_expansion(query: str, initial_count: int) -> AsyncIterator[Memory]`:
- Yield summaries immediately
- Optionally expand top results
### 5.4 Streaming Results
- [ ] Update search methods to support async generators:
- `async def search_memories_stream(query, filters) -> AsyncIterator[Memory]`:
- Yield memories as they're retrieved from database
- Useful for large result sets
- Implement in all backends (SQLite, Neo4j)
### 5.5 Tools for Progressive Loading
- [ ] Update `search_memories()` tool in server:
- Add `return_summaries_only: bool` parameter
- Add `page: int` and `page_size: int` parameters
- Return paginated results with metadata
- [ ] Add `expand_memory_details(memory_id: str)` tool (standard feature set):
- Load full memory details on demand
- [ ] Add `search_memories_paginated(query, page, page_size)` tool (standard feature set):
- Explicit pagination support
### 5.6 Response Size Management
- [ ] Create `/src/memorygraph/response/size_manager.py`:
- `estimate_token_count(memory: Memory) -> int`:
- Rough estimation (chars / 4)
- `truncate_to_token_budget(memories: list[Memory], max_tokens: int) -> list[Memory]`:
- Prioritize by relevance and importance
- Truncate content if needed
- Return subset that fits budget
- [ ] Integrate into search functions:
- Add `max_tokens: int` parameter to searches
- Apply token budget before returning results
### 5.7 Testing
- [ ] Create `/tests/test_progressive_loading.py`:
- Test summary-only retrieval
- Test detail expansion
- Test pagination (page-based and cursor-based)
- Test streaming search
- Test token budget enforcement
- Test across backends
---
## Feature 6: Performance Enhancements
Depends on: All previous features (applies optimizations across the board)
### 6.1 Database Indexing
- [ ] Create `/migrations/004_add_performance_indexes.sql` (SQLite):
- Index on `memories(type, importance, archived_at)` for filtered searches
- Index on `memories(last_accessed)` for decay queries
- Index on `memories(created_at)` for time-based queries
- Index on `relationships(from_memory_id, relationship_type)`
- Index on `relationships(to_memory_id)`
- [ ] Add Neo4j indexes in backend initialization:
- Create index on `:Memory(type)`
- Create index on `:Memory(importance)`
- Create index on `:Memory(last_accessed)`
- Create constraint on `:Memory(id)` (if not exists)
### 6.2 Query Optimization
- [ ] Optimize SQLite queries in `/src/memorygraph/backends/sqlite_fallback.py`:
- Use parameterized queries everywhere (prevent injection, enable caching)
- Combine multiple SELECTs into single query with JOINs where possible
- Use `EXPLAIN QUERY PLAN` to verify index usage
- Add query result caching for expensive relationship queries
- [ ] Optimize Neo4j queries in `/src/memorygraph/backends/neo4j_backend.py`:
- Use `PROFILE` to analyze query performance
- Add query hints (`USING INDEX`, `USING SCAN`)
- Batch Cypher queries where possible (use `UNWIND` for lists)
### 6.3 Caching Layer
- [ ] Create `/src/memorygraph/cache/cache_manager.py`:
- `CacheManager` class using `functools.lru_cache` or Redis:
- `async def get_memory(memory_id: str) -> Memory | None`
- `async def set_memory(memory: Memory)`
- `async def invalidate(memory_id: str)`
- `async def clear_all()`
- TTL-based expiration (default: 5 minutes)
- Size-based LRU eviction (default: 1000 memories)
- [ ] Integrate caching into backends:
- Wrap `get_memory()` with cache lookup
- Invalidate cache on `update_memory()` and `delete_memory()`
- Optional cache for search results (keyed by query hash)
- [ ] Add cache configuration to server:
- `cache_enabled: bool`
- `cache_ttl_seconds: int`
- `cache_max_size: int`
- `cache_backend: str` ("memory" | "redis")
### 6.4 Batch Operations
- [ ] Add batch tools to server (full feature set):
- `store_memories_batch(memories: list[dict])`:
- Single transaction for multiple insertions
- Return list of created IDs
- `update_memories_batch(updates: list[dict])`:
- Batch UPDATE in single query
- `delete_memories_batch(memory_ids: list[str])`:
- Batch DELETE with IN clause
- [ ] Optimize backend implementations:
- Use `executemany()` for SQLite batch operations
- Use `UNWIND` with Cypher for Neo4j batch operations
- Wrap in transactions for atomicity
### 6.5 Background Task Queue
- [ ] Create `/src/memorygraph/tasks/task_queue.py`:
- Simple in-memory queue using `asyncio.Queue`
- `TaskQueue` class:
- `async def enqueue(task_fn, *args, **kwargs)`
- `async def start_worker()`
- `async def stop_worker()`
- Use for non-blocking operations (embedding generation, decay)
- [ ] Refactor decay scheduler to use task queue:
- Enqueue decay calculations instead of blocking
- Process in background worker
- [ ] Refactor embedding generation to use task queue:
- Enqueue embedding generation after memory creation
- Process asynchronously
### 6.6 Connection Pooling
- [ ] Update SQLite backend to use connection pool:
- Use `aiosqlite` connection pool (if not already)
- Configure max connections (default: 5)
- [ ] Update Neo4j backend to use connection pool:
- Verify `neo4j.AsyncGraphDatabase.driver()` uses pooling
- Configure pool size in config
### 6.7 Monitoring and Profiling
- [ ] Create `/src/memorygraph/monitoring/performance_monitor.py`:
- `PerformanceMonitor` class:
- Track query execution times
- Track cache hit/miss rates
- Track memory usage
- `get_statistics() -> dict` tool
- [ ] Add performance logging:
- Log slow queries (>100ms threshold)
- Log cache statistics periodically
- Log decay/consolidation run statistics
- [ ] Add `get_performance_stats()` tool (full feature set):
- Return monitoring statistics
- Include database size, memory count, relationship count
### 6.8 Testing
- [ ] Create `/tests/test_performance.py`:
- Benchmark search with 1000, 5000, 10000 memories
- Test index usage (verify EXPLAIN output)
- Test cache hit rates
- Test batch operation performance vs individual
- Stress test concurrent operations
- Test across backends
- [ ] Create `/tests/test_caching.py`:
- Test cache hit/miss
- Test cache invalidation
- Test TTL expiration
- Test LRU eviction
---
## Integration and Testing
### 7.1 Cross-Feature Integration
- [ ] Ensure decay works with consolidation:
- Consolidated memories should reset `last_accessed`
- Consolidated memories should inherit max importance
- [ ] Ensure clustering works with archived memories:
- Exclude archived from clustering by default
- Add option to include archived
- [ ] Ensure progressive loading works with decay:
- Summaries should include importance and last_accessed
- Allow sorting by recency or importance
### 7.2 End-to-End Testing
- [ ] Create `/tests/test_e2e_scaling.py`:
- Simulate realistic usage scenario:
- Create 5000 memories over simulated time
- Perform searches (should use clustering and progressive loading)
- Run decay (should archive old memories)
- Run consolidation (should merge similar memories)
- Verify final database state
- Verify performance meets targets (searches < 500ms)
### 7.3 Backward Compatibility
- [ ] Test with existing databases (before migrations):
- Verify migrations run successfully
- Verify old data is preserved
- Verify new features work with backfilled data
- [ ] Test graceful degradation:
- If embeddings unavailable, clustering falls back to graph-based
- If cache unavailable, queries go directly to database
- If task queue full, operations run synchronously
### 7.4 Documentation Updates
- [ ] Update `/README.md`:
- Document new features
- Document configuration options
- Document performance characteristics
- Add scaling best practices section
- [ ] Create `/docs/SCALING.md`:
- Explain decay, consolidation, clustering, progressive loading
- Provide configuration examples
- Explain when to use each feature
- Performance tuning guide
- [ ] Update API documentation:
- Document new tools
- Document new parameters on existing tools
- Provide usage examples
---
## Deployment and Migration
### 8.1 Migration Scripts
- [ ] Create `/scripts/migrate_database.py`:
- Detect current schema version
- Run necessary migrations in order
- Backup database before migration
- Verify migration success
- [ ] Test migrations on copies of production databases (if applicable)
### 8.2 Configuration Management
- [ ] Create `/config/default_config.yaml`:
- All default configuration values
- Comments explaining each option
- [ ] Update server to load config from file or environment:
- Priority: CLI args > env vars > config file > defaults
### 8.3 Feature Flags
- [ ] Create `/src/memorygraph/feature_flags.py`:
- `FeatureFlags` dataclass:
- `decay_enabled: bool`
- `consolidation_enabled: bool`
- `clustering_enabled: bool`
- `caching_enabled: bool`
- Load from config
- [ ] Wrap new features in feature flag checks:
- Only register tools if feature enabled
- Skip background tasks if feature disabled
---
## Dependencies Between Features
1. **Access Pattern Tracking** - No dependencies (implement first)
2. **Decay-Based Pruning** - Requires Access Pattern Tracking
3. **Progressive Loading** - No dependencies (can implement in parallel with #1)
4. **Performance Enhancements** - No dependencies (can start early, optimize as you go)
5. **Memory Consolidation** - Requires Access Pattern Tracking, benefits from Decay
6. **Semantic Clustering** - No hard dependencies, but benefits from all other features
**Recommended Implementation Order:**
1. Access Pattern Tracking (Feature 1)
2. Progressive Loading (Feature 5) + Performance Enhancements (Feature 6) in parallel
3. Decay-Based Pruning (Feature 2)
4. Memory Consolidation (Feature 3)
5. Semantic Clustering (Feature 4)
---
## Notes for Coding Agent
- Each checkbox is an atomic, testable unit of work
- Run tests after completing each subsection (e.g., after 1.1, run tests before moving to 1.2)
- Commit after each major subsection (e.g., after 1.3, commit "feat: implement access pattern tracking")
- Check backward compatibility at each database schema change
- Verify all three backends (SQLite, Neo4j, Memgraph) remain functional after each feature
- Use feature flags to enable incremental rollout
- Profile performance after each feature to catch regressions early