Skip to main content
Glama

Datadog MCP Server

by brukhabtu
  • Apple
  • Linux

Datadog MCP Server

A Model Context Protocol (MCP) server that enables AI assistants to interact with Datadog's observability platform through natural language.

Features

  • Metrics: Query time-series data, list metrics, get metadata
  • Logs: Search and filter log events
  • APM: Access trace data, service maps, dependencies
  • Infrastructure: Host information, container data, process metrics
  • Dashboards: List and read dashboard configurations
  • Monitors: Alert rules and status information
  • Incidents: Incident tracking and management
  • Service Catalog: Service definitions and relationships
  • SLOs: Service level objectives and compliance data
  • Usage: Account usage statistics

Installation

From Source

git clone https://github.com/brukhabtu/datadog-mcp.git cd datadog-mcp pip install -e .

Using Docker

docker pull ghcr.io/brukhabtu/datadog-mcp:latest

Configuration

Required Environment Variables

DATADOG_API_KEY="your-datadog-api-key" DATADOG_APP_KEY="your-datadog-application-key"

Optional Environment Variables

DATADOG_BASE_URL="https://api.datadoghq.com" # Default US site DATADOG_TIMEOUT=30 # Request timeout in seconds MCP_TRANSPORT=stdio # Transport method (stdio/websocket) MCP_PORT=8000 # Port for WebSocket transport MCP_LOG_LEVEL=INFO # Logging level MCP_ENABLE_SECURITY_FILTERING=true # Enable read-only filtering

Regional Endpoints

For different Datadog regions:

  • US: https://api.datadoghq.com (default)
  • EU: https://api.datadoghq.eu
  • US3: https://api.us3.datadoghq.com
  • US5: https://api.us5.datadoghq.com
  • AP1: https://api.ap1.datadoghq.com

Usage

Command Line

# Run with default stdio transport datadog-mcp # Run with WebSocket transport datadog-mcp --transport websocket --port 8000 # Run with debug logging datadog-mcp --log-level DEBUG

Docker

# Run with environment file docker run --env-file .env ghcr.io/brukhabtu/datadog-mcp:latest # Run with individual environment variables docker run -e DATADOG_API_KEY=your-key \ -e DATADOG_APP_KEY=your-app-key \ ghcr.io/brukhabtu/datadog-mcp:latest

Claude Desktop Integration

Add to your Claude Desktop configuration file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
Linux: ~/.config/claude/claude_desktop_config.json
{ "mcpServers": { "datadog": { "command": "docker", "args": [ "run", "--rm", "-i", "--env", "DATADOG_API_KEY", "--env", "DATADOG_APP_KEY", "ghcr.io/brukhabtu/datadog-mcp:latest" ], "env": { "DATADOG_API_KEY": "your-datadog-api-key", "DATADOG_APP_KEY": "your-datadog-application-key" } } } }

Or use the native installation:

{ "mcpServers": { "datadog": { "command": "datadog-mcp", "args": ["--transport", "stdio"], "env": { "DATADOG_API_KEY": "your-datadog-api-key", "DATADOG_APP_KEY": "your-datadog-application-key" } } } }

OpenAPI Specification

The server requires the Datadog v2 API OpenAPI specification to be placed at: src/datadog_mcp/specs/datadog-v2.yaml

You can obtain this specification from:

Security

By default, the server runs with security filtering enabled (MCP_ENABLE_SECURITY_FILTERING=true), which restricts operations to read-only access. This includes:

Allowed Operations

  • GET requests to query metrics, logs, traces, etc.
  • Reading dashboards, monitors, and configurations
  • Searching and filtering data
  • Viewing usage statistics

Blocked Operations

  • All POST, PUT, PATCH, DELETE operations
  • User and API key management
  • Organization settings modifications
  • Any destructive actions

To disable security filtering (not recommended for production):

MCP_ENABLE_SECURITY_FILTERING=false

Example Interactions

Once configured, you can interact with Datadog through natural language:

  • "Show me the error rate for my web service over the last hour"
  • "List all active monitors that are alerting"
  • "Get the CPU usage metrics for production hosts"
  • "Show me recent incidents in the platform team"
  • "What's our log volume usage this month?"
  • "Find traces with high latency in the payment service"
  • "Show me the service dependencies for the API gateway"

Development

Setup Development Environment

# Clone the repository git clone https://github.com/brukhabtu/datadog-mcp.git cd datadog-mcp # Create virtual environment python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate # Install in development mode pip install -e .

Running Tests

pytest tests/

Building Docker Image

docker build -t datadog-mcp:local .

Architecture

The server follows the same architectural patterns as the Jira MCP implementation:

  • FastMCP 2.0: Leverages automatic tool generation from OpenAPI specifications
  • Security-First: Default read-only access with configurable filtering
  • Environment Configuration: All settings via environment variables
  • Docker-First: Containerized deployment for consistency
  • Transport Flexibility: Supports both stdio and WebSocket transports

Troubleshooting

Authentication Errors

  • Ensure both DATADOG_API_KEY and DATADOG_APP_KEY are set correctly
  • Verify your keys have the necessary permissions in Datadog
  • Check you're using the correct regional endpoint

Connection Issues

  • Verify your network can reach the Datadog API
  • Check if you need to configure proxy settings
  • Ensure the timeout is sufficient for your queries

Missing Tools

  • Verify the OpenAPI specification is present in src/datadog_mcp/specs/
  • Check the server logs for any specification loading errors
  • Ensure the specification version matches your Datadog API version

Contributing

Contributions are welcome! Please feel free to submit issues and pull requests.

License

MIT License - see LICENSE file for details

Credits

Based on the Jira MCP implementation pattern.

Related MCP Servers

  • -
    security
    F
    license
    -
    quality
    A versatile Model Context Protocol server that enables AI assistants to manage calendars, track tasks, handle emails, search the web, and control smart home devices.
    Last updated -
    2
    Python
    • Apple
    • Linux
  • -
    security
    F
    license
    -
    quality
    A comprehensive Model Context Protocol server implementation that enables AI assistants to interact with file systems, databases, GitHub repositories, web resources, and system tools while maintaining security and control.
    Last updated -
    16
    TypeScript
  • -
    security
    F
    license
    -
    quality
    A Model Context Protocol server that enables AI assistants to securely interact with Apache IoTDB databases through a controlled interface for listing tables, reading data, and executing SQL queries.
    Last updated -
    Python
    • Apple
  • -
    security
    F
    license
    -
    quality
    A lightweight Model Context Protocol server that enables creating, managing, and querying model contexts with integrated Datadog metrics and monitoring.
    Last updated -
    Python
    • Linux
    • Apple

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/brukhabtu/datadog-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server