Skip to main content
Glama

FastMCP

by ryuichi1208

FastMCP - Model Context Protocol Server

A lightweight Model Context Protocol (MCP) server implemented with FastMCP, a fast and Pythonic framework for building MCP servers and clients.

Features

  • Create, retrieve, update, and delete model contexts
  • Query execution against specific contexts
  • Filtering by model name and tags
  • In-memory storage (for development)
  • FastMCP integration for easy MCP server development
  • Datadog integration for metrics and monitoring

Requirements

  • Python 3.7+
  • FastMCP
  • uv (recommended for environment management)
  • Datadog account (optional, for metrics)

Installation

The simplest way to install is using the provided scripts:

Unix/Linux/macOS
# Clone the repository git clone https://github.com/yourusername/datadog-mcp-server.git cd datadog-mcp-server # Make the install script executable chmod +x install.sh # Run the installer ./install.sh
Windows
# Clone the repository git clone https://github.com/yourusername/datadog-mcp-server.git cd datadog-mcp-server # Run the installer .\install.ps1

Manual Installation

# Clone the repository git clone https://github.com/yourusername/datadog-mcp-server.git cd datadog-mcp-server # Create and activate a virtual environment with uv uv venv # On Unix/Linux/macOS: source .venv/bin/activate # On Windows: .\.venv\Scripts\activate # Install dependencies uv pip install -r requirements.txt

Datadog Configuration

The server integrates with Datadog for metrics and monitoring. You can configure Datadog API credentials in several ways:

1. Environment Variables

Set these environment variables before starting the server:

# Unix/Linux/macOS export DATADOG_API_KEY=your_api_key export DATADOG_APP_KEY=your_app_key # Optional export DATADOG_SITE=datadoghq.com # Optional, default: datadoghq.com # Windows PowerShell $env:DATADOG_API_KEY = 'your_api_key' $env:DATADOG_APP_KEY = 'your_app_key' # Optional $env:DATADOG_SITE = 'datadoghq.com' # Optional

2. .env File

Create a .env file in the project directory:

DATADOG_API_KEY=your_api_key DATADOG_APP_KEY=your_app_key DATADOG_SITE=datadoghq.com

3. FastMCP CLI Installation

When installing as a Claude Desktop tool, you can pass environment variables:

fastmcp install mcp_server.py --name "Model Context Server" -v DATADOG_API_KEY=your_api_key

4. Runtime Configuration

Use the configure_datadog tool at runtime:

result = await client.call_tool("configure_datadog", { "api_key": "your_api_key", "app_key": "your_app_key", # Optional "site": "datadoghq.com" # Optional })

Usage

Starting the Server

# Start directly from activated environment python mcp_server.py # Or use uv run (no activation needed) uv run python mcp_server.py # Use FastMCP CLI for development (if in activated environment) fastmcp dev mcp_server.py # Use FastMCP CLI with uv (no activation needed) uv run -m fastmcp dev mcp_server.py

Installing as a Claude Desktop Tool

# From activated environment fastmcp install mcp_server.py --name "Model Context Server" # Using uv directly uv run python -m fastmcp install mcp_server.py --name "Model Context Server" # With Datadog API key fastmcp install mcp_server.py --name "Model Context Server" -v DATADOG_API_KEY=your_api_key

Using the Tools

The server provides the following tools:

  • create_context - Create a new context
  • get_context - Retrieve a specific context
  • update_context - Update an existing context
  • delete_context - Delete a context
  • list_contexts - List all contexts (with optional filtering)
  • query_model - Execute a query against a specific context
  • health_check - Server health check
  • configure_datadog - Configure Datadog integration at runtime

Example Requests

Creating a Context

result = await client.call_tool("create_context", { "context_id": "model-123", "model_name": "gpt-3.5", "data": { "parameters": { "temperature": 0.7 } }, "tags": ["production", "nlp"] })

Executing a Query

result = await client.call_tool("query_model", { "context_id": "model-123", "query_data": { "prompt": "Hello, world!" } })

Configuring Datadog

result = await client.call_tool("configure_datadog", { "api_key": "your_datadog_api_key", "app_key": "your_datadog_app_key", # Optional "site": "datadoghq.com" # Optional })

Datadog Metrics

The server reports the following metrics to Datadog:

  • mcp.contexts.created - Context creation events
  • mcp.contexts.updated - Context update events
  • mcp.contexts.deleted - Context deletion events
  • mcp.contexts.accessed - Context access events
  • mcp.contexts.total - Total number of contexts
  • mcp.contexts.listed - List contexts operation events
  • mcp.queries.executed - Query execution events
  • mcp.server.startup - Server startup events
  • mcp.server.shutdown - Server shutdown events

Development

See the included mcp_example.py for a client implementation example:

# Run the example client (with activated environment) python mcp_example.py # Run with uv (no activation needed) uv run python mcp_example.py

License

MIT

Resources

-
security - not tested
F
license - not found
-
quality - not tested

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

A lightweight Model Context Protocol server that enables creating, managing, and querying model contexts with integrated Datadog metrics and monitoring.

  1. Features
    1. Requirements
      1. Installation
        1. Using uv (Recommended)
        2. Manual Installation
      2. Datadog Configuration
        1. Environment Variables
        2. .env File
        3. FastMCP CLI Installation
        4. Runtime Configuration
      3. Usage
        1. Starting the Server
        2. Installing as a Claude Desktop Tool
        3. Using the Tools
      4. Example Requests
        1. Creating a Context
        2. Executing a Query
        3. Configuring Datadog
      5. Datadog Metrics
        1. Development
          1. License
            1. Resources

              Related MCP Servers

              • -
                security
                F
                license
                -
                quality
                A Model Context Protocol server built with mcp-framework that allows users to create and manage custom tools for processing data, integrating with the Claude Desktop via CLI.
                Last updated -
                48
                4
                TypeScript
                • Apple
              • -
                security
                A
                license
                -
                quality
                A Model Context Protocol server that provides file system operations, analysis, and manipulation capabilities through a standardized tool interface.
                Last updated -
                1
                TypeScript
                MIT License
              • -
                security
                F
                license
                -
                quality
                A Model Context Protocol server that provides a comprehensive interface for interacting with the ConnectWise Manage API, simplifying API discovery, execution, and management for both developers and AI assistants.
                Last updated -
                46
                2
                Python
                • Linux
                • Apple
              • -
                security
                A
                license
                -
                quality
                A Model Context Protocol server for data wrangling that provides standardized interfaces for data preprocessing, transformation, and analysis tasks including data aggregation and descriptive statistics.
                Last updated -
                1
                Python
                MIT License
                • Linux
                • Apple

              View all related MCP servers

              MCP directory API

              We provide all the information about MCP servers via our MCP API.

              curl -X GET 'https://glama.ai/api/mcp/v1/servers/ryuichi1208/datadog-mcp-server'

              If you have feedback or need assistance with the MCP directory API, please join our Discord server