Skip to main content
Glama

MCP Template

by rhit-bhuwalk

MCP Template - Build Your Own AI Server

A practical template for creating Model Context Protocol (MCP) servers that enable AI assistants to interact with your data and services.

Overview

This template provides a foundation for building MCP servers - specialized services that AI assistants can connect to for accessing external data, performing operations, and extending their capabilities beyond their training data.

Key Capabilities:

  • Expose data as queryable resources
  • Provide custom tools for AI assistants to execute
  • Handle real-time data operations (CRUD)
  • Connect multiple data sources and services

Prerequisites

  • Node.js 18+ and npm
  • TypeScript knowledge
  • Understanding of REST APIs or similar concepts

Quick Start

git clone https://github.com/rhit-bhuwalk/MCP_TEMPLATE.git cd MCP_TEMPLATE npm install npm run build npm start

This launches a server with sample user data that demonstrates core MCP functionality.

Core Concepts

Resources

Resources represent data collections that AI assistants can query. Think of them as API endpoints that return structured data.

// Register a resource dataService.registerResource('users', 'User account information'); // AI can now query: "Show me all users" or "Find user with ID 123"

Tools

Tools are functions that AI assistants can execute to perform specific operations on your data.

// Register a tool server.registerTool( 'create_user', 'Create a new user account', z.object({ name: z.string(), email: z.string().email() }), async (args) => { return await dataService.create('mcp://users', args); } );

Implementation Guide

1. Define Your Data Structure

Start by defining the shape of your data:

interface Product { id: string; name: string; price: number; category: string; inStock: boolean; }

2. Register Resources

Make your data discoverable to AI assistants:

// In your server setup dataService.registerResource('products', 'Product inventory data'); // Seed with sample data const sampleProducts: Product[] = [ { id: '1', name: 'Laptop', price: 999, category: 'Electronics', inStock: true }, { id: '2', name: 'Coffee Mug', price: 15, category: 'Kitchen', inStock: false } ]; dataService.seedData('mcp://products', sampleProducts);

3. Add Custom Tools

Create specific operations for your use case:

// Inventory management tool server.registerTool( 'update_stock_status', 'Update product stock availability', z.object({ productId: z.string(), inStock: z.boolean() }), async (args) => { const result = await dataService.update( 'mcp://products', args.productId, { inStock: args.inStock } ); return { success: true, product: result }; } ); // Analytics tool server.registerTool( 'get_category_summary', 'Get inventory summary by category', z.object({ category: z.string().optional() }), async (args) => { const products = await dataService.queryResource('mcp://products', { filter: args.category ? { category: args.category } : undefined }); return { totalProducts: products.length, inStock: products.filter(p => p.inStock).length, outOfStock: products.filter(p => !p.inStock).length, averagePrice: products.reduce((sum, p) => sum + p.price, 0) / products.length }; } );

4. Connect Real Data Sources

Replace in-memory storage with your actual data:

// Example: Connect to a database class DatabaseDataService extends DataService { async queryResource(uri: string, query?: any) { const resourceType = uri.split('://')[1]; switch (resourceType) { case 'products': return await this.db.products.findMany({ where: query?.filter || {} }); case 'orders': return await this.db.orders.findMany({ include: { items: true } }); default: throw new Error(`Unknown resource: ${resourceType}`); } } }

Project Structure

src/ ├── core/ # Core MCP server functionality ├── services/ # Data service implementations ├── examples/ # Example implementations │ └── server.ts # Complete working example └── index.ts # Main entry point

Start here: src/examples/server.ts contains a complete implementation showing all concepts in practice.

Advanced Patterns

Multi-Resource Operations

server.registerTool( 'process_order', 'Process customer order and update inventory', z.object({ customerId: z.string(), productIds: z.array(z.string()) }), async (args) => { // Check inventory const products = await dataService.queryByIds('mcp://products', args.productIds); // Create order const order = await dataService.create('mcp://orders', { customerId: args.customerId, items: products, total: products.reduce((sum, p) => sum + p.price, 0) }); // Update inventory for (const product of products) { await dataService.update('mcp://products', product.id, { inStock: false }); } return { orderId: order.id, total: order.total }; } );

Error Handling and Validation

server.registerTool( 'safe_user_operation', 'Safely perform user operations with validation', schema, async (args) => { try { // Validate business rules if (args.email && !isValidEmail(args.email)) { throw new Error('Invalid email format'); } const result = await dataService.performOperation(args); return { success: true, data: result }; } catch (error) { return { success: false, error: error.message, code: 'VALIDATION_ERROR' }; } } );

Testing Your Server

# Run tests npm test # Test with a real AI assistant npm start # Connect Claude Desktop or other MCP-compatible client

Deployment Considerations

  • Authentication: Add API keys or OAuth for production use
  • Rate Limiting: Implement request throttling for high-traffic scenarios
  • Data Validation: Always validate inputs from AI assistants
  • Logging: Add comprehensive logging for debugging and monitoring
  • Error Handling: Provide clear error messages that help AI assistants understand what went wrong

Next Steps

  1. Examine the examples - Understand the patterns by studying src/examples/server.ts
  2. Adapt the data models - Replace sample data with your domain objects
  3. Add domain-specific tools - Create operations that match your business logic
  4. Connect real data sources - Integrate with databases, APIs, or file systems
  5. Test with AI assistants - Verify functionality with Claude, ChatGPT, or other MCP clients

This template provides the scaffolding - your domain expertise and data make it valuable.

-
security - not tested
A
license - permissive license
-
quality - not tested

hybrid server

The server is able to function both locally and remotely, depending on the configuration or use case.

A template for building Model Context Protocol servers that allow AI assistants to interact with custom data and services through queryable resources and specialized tools.

  1. Overview
    1. Prerequisites
      1. Quick Start
        1. Core Concepts
          1. Resources
          2. Tools
        2. Implementation Guide
          1. Define Your Data Structure
          2. Register Resources
          3. Add Custom Tools
          4. Connect Real Data Sources
        3. Project Structure
          1. Advanced Patterns
            1. Multi-Resource Operations
            2. Error Handling and Validation
          2. Testing Your Server
            1. Deployment Considerations
              1. Next Steps

                Related MCP Servers

                • A
                  security
                  F
                  license
                  A
                  quality
                  A starter template for building Model Context Protocol servers that can be integrated with Cursor or Claude Desktop, allowing developers to create custom tools and extensions for AI assistants.
                  Last updated -
                  1
                  6
                  9
                  TypeScript
                  • Apple
                • -
                  security
                  F
                  license
                  -
                  quality
                  A Model Context Protocol server that provides persistent task management capabilities for AI assistants, allowing them to create, update, and track tasks beyond their usual context limitations.
                  Last updated -
                  1
                  TypeScript
                • A
                  security
                  A
                  license
                  A
                  quality
                  A Model Context Protocol server that enables AI assistants to interact with Confluence content, supporting operations like retrieving, searching, creating, and updating pages and spaces.
                  Last updated -
                  9
                  3
                  TypeScript
                  MIT License
                • A
                  security
                  A
                  license
                  A
                  quality
                  A Model Context Protocol server that enables AI assistants to interact with Coda documents, allowing operations like listing, creating, reading, updating, and duplicating pages.
                  Last updated -
                  5
                  73
                  9
                  TypeScript
                  MIT License
                  • Apple
                  • Linux

                View all related MCP servers

                MCP directory API

                We provide all the information about MCP servers via our MCP API.

                curl -X GET 'https://glama.ai/api/mcp/v1/servers/rhit-bhuwalk/MCP_TEMPLATE'

                If you have feedback or need assistance with the MCP directory API, please join our Discord server