Skip to main content
Glama

mcp_ollama_status

Check the status of Ollama servers connected to the Ontology MCP, enabling real-time monitoring of AI models for ontology data querying and manipulation.

Instructions

Ollama 서버 상태 확인

Input Schema

NameRequiredDescriptionDefault
random_stringYesDummy parameter for no-parameter tools

Input Schema (JSON Schema)

{ "properties": { "random_string": { "description": "Dummy parameter for no-parameter tools", "type": "string" } }, "required": [ "random_string" ], "type": "object" }

Implementation Reference

  • Complete tool definition for 'mcp_ollama_status' including input schema, description, and handler function. The handler delegates to ollamaService.getStatus() and formats the response.
    { name: 'mcp_ollama_status', description: 'Ollama 서버 상태 확인', inputSchema: { type: 'object', properties: { random_string: { type: 'string', description: 'Dummy parameter for no-parameter tools' } }, required: ['random_string'] }, async handler(args: any): Promise<ToolResponse> { try { const result = await ollamaService.getStatus(); return { content: [{ type: 'text', text: result }] }; } catch (error) { return { content: [{ type: 'text', text: `Status 확인 오류: ${error instanceof Error ? error.message : String(error)}` }] }; } } },
  • Core implementation of Ollama status check in OllamaService.getStatus(). Executes 'ollama list' command and queries /api/tags endpoint to determine server status and list models.
    /** * Ollama 상태 확인 */ async getStatus(): Promise<string> { try { // 로컬 Ollama 목록 커맨드 실행 const { stdout, stderr } = await execAsync('ollama list'); if (stderr) { throw new Error(stderr); } // 설치된 모델 가져오기 const response = await axios.get(this.getApiUrl('tags')); return JSON.stringify({ status: 'online', localModels: stdout.trim(), apiModels: response.data }, null, 2); } catch (error) { return JSON.stringify({ status: 'offline', error: formatError(error) }, null, 2); } }
  • src/index.ts:26-54 (registration)
    MCP Server capabilities registration enabling the 'mcp_ollama_status' tool (line 37).
    mcp_sparql_execute_query: true, mcp_sparql_update: true, mcp_sparql_list_repositories: true, mcp_sparql_list_graphs: true, mcp_sparql_get_resource_info: true, mcp_ollama_run: true, mcp_ollama_show: true, mcp_ollama_pull: true, mcp_ollama_list: true, mcp_ollama_rm: true, mcp_ollama_chat_completion: true, mcp_ollama_status: true, mcp_http_request: true, mcp_openai_chat: true, mcp_openai_image: true, mcp_openai_tts: true, mcp_openai_transcribe: true, mcp_openai_embedding: true, mcp_gemini_generate_text: true, mcp_gemini_chat_completion: true, mcp_gemini_list_models: true, mcp_gemini_generate_images: false, mcp_gemini_generate_image: false, mcp_gemini_generate_videos: false, mcp_gemini_generate_multimodal_content: false, mcp_imagen_generate: false, mcp_gemini_create_image: false, mcp_gemini_edit_image: false },

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/bigdata-coss/agent_mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server