Skip to main content
Glama

MCP Integration Proxy

by belaymit

MCP Integration Challenge: Proxy & RAG Foundations

AI Protocol Engineer Challenge: Week 1

This repository contains the complete implementation for the MCP Integration, Proxy & RAG Foundations challenge using TypeScript/NodeJS with LangGraph.js.

Project Overview

This project implements a comprehensive MCP (Model Context Protocol) ecosystem including:

  • MCP Proxy Server: Routes requests to multiple downstream MCP servers
  • Dev Assistant Agent: LangGraph.js-based agent with RAG capabilities
  • Mock Knowledge Base: Sample data for testing RAG functionality
  • MCP Client Tester: Testing tools for MCP server interactions
  • IDE Integration: Configuration for VS Code/Cursor MCP support

Architecture

┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐ │ IDE Client │ ──▶│ MCP Proxy │ ──▶│ Downstream MCP │ │ (VS Code/Cursor)│ │ Server │ │ Servers │ └─────────────────┘ └──────────────────┘ └─────────────────┘ │ │ ▼ │ ┌──────────────────┐ │ │ Dev Assistant │ │ │ Agent │ │ │ (LangGraph.js) │ │ └──────────────────┘ │ │ │ ▼ │ ┌──────────────────┐ │ │ RAG Pipeline │ │ │ (LangChain JS) │ │ └──────────────────┘ │ │ │ ▼ │ ┌──────────────────┐ │ │ Mock Knowledge │◀────────────┘ │ Base │ └──────────────────┘

Project Structure

mcp/ ├── src/ │ ├── proxy/ # MCP Proxy Server implementation │ ├── agent/ # Dev Assistant Agent with LangGraph.js │ ├── rag/ # RAG setup and utilities │ ├── client/ # MCP Client testing tools │ ├── types/ # TypeScript type definitions │ └── utils/ # Shared utilities ├── tests/ # Unit and integration tests ├── docs/ # Documentation │ ├── protocols_understanding.md │ ├── mcp_server_exploration.md │ ├── advanced_mcp_concepts.md │ ├── realtime_rag_notes.md │ └── ide_mcp_integration.md ├── mock_knowledge_base/ # Sample data for RAG │ ├── docs/ │ ├── code/ │ ├── tickets/ │ └── jira_tickets.json ├── package.json ├── tsconfig.json └── README.md

Technology Stack

Core Technologies

  • Runtime: Node.js 18+
  • Language: TypeScript 5.5+
  • Agent Framework: LangGraph.js
  • RAG Framework: LangChain JS

Dependencies

  • Protocol Communication: Built-in fetch, axios
  • Agent Building: @langchain/langgraph
  • RAG Components: @langchain/community, langchain
  • Web Framework: Express.js
  • Testing: Vitest
  • Development: tsx, eslint, prettier

Quick Start

Prerequisites

  • Node.js 18 or later
  • npm or yarn package manager
  • Git

Installation

  1. Clone the repository:
git clone https://github.com/your-username/mcp.git cd mcp
  1. Install dependencies:
npm install --legacy-peer-deps
  1. Build the project:
npm run build
  1. Run tests:
npm test

Running Components

1. MCP Proxy Server

npm run proxy:start # Starts on http://localhost:8002

2. Dev Assistant Agent

npm run agent:start

3. MCP Client Tester

npm run client:test

4. Development Mode (Watch)

npm run dev

Environment Setup

Required Environment Variables

Create a .env file in the root directory:

# OpenAI API Key (for LangChain) OPENAI_API_KEY=your_openai_api_key # GitHub Token (for GitHub MCP server) GITHUB_TOKEN=your_github_token # Google Drive Credentials (for GDrive MCP server) GOOGLE_DRIVE_CLIENT_ID=your_client_id GOOGLE_DRIVE_CLIENT_SECRET=your_client_secret # Atlassian Credentials (for Atlassian MCP server) ATLASSIAN_API_TOKEN=your_atlassian_token ATLASSIAN_INSTANCE_URL=your_instance_url # Proxy Configuration PROXY_PORT=8002 PROXY_HOST=localhost # Logging LOG_LEVEL=info

MCP Server Configuration

The proxy server can route to multiple downstream MCP servers:

Supported Servers

  • Filesystem: Local file system access
  • GitHub: Repository and issue management
  • Google Drive: Document access and management
  • Atlassian: JIRA and Confluence integration

Proxy Routing Configuration

// src/proxy/config.ts export const serverRoutes = { 'filesystem': 'http://localhost:8001', 'github': 'http://localhost:8003', 'gdrive': 'http://localhost:8004', 'atlassian': 'http://localhost:8005' };

IDE Integration

VS Code Setup

  1. Install the Copilot Chat extension
  2. Add to your settings.json:
{ "github.copilot.chat.mcp.include": [ "http://localhost:8002/mcp" ] }

Cursor Setup

  1. Open Cursor settings
  2. Add MCP server URL: http://localhost:8002/mcp

Testing

Run All Tests

npm test

Run Specific Test Suites

npm run test:proxy # Proxy server tests npm run test:agent # Agent tests npm run test:rag # RAG pipeline tests npm run test:client # Client tests

Test Coverage

npm run test:coverage

Documentation

Development Workflow

Code Style

  • ESLint for linting
  • Prettier for formatting
  • TypeScript strict mode enabled

Git Workflow

# Format code npm run format # Lint code npm run lint # Run tests before commit npm test # Build before push npm run build

Features Implemented

✅ Task 1: Environment Setup & Protocol Study

  • TypeScript/NodeJS environment with LangGraph.js
  • Mock knowledge base structure
  • Comprehensive MCP/A2A protocol documentation
  • Target MCP server analysis

🔄 Upcoming Tasks

  • Task 2: Explore & Test Existing MCP Servers
  • Task 3: Design & Implement MCP Proxy Server
  • Task 4: Implement Basic RAG Agent with MCP Integration
  • Task 5: Research Advanced MCP Concepts
  • Task 6: Test MCP Proxy with IDE Integration
  • Task 7: Documentation & Stand-up Preparation

Troubleshooting

Common Issues

  1. Dependency conflicts: Use npm install --legacy-peer-deps
  2. TypeScript errors: Ensure TypeScript 5.5+ is installed
  3. Build failures: Check Node.js version (18+ required)
  4. Test failures: Verify environment variables are set

Getting Help

  1. Check the documentation for detailed guides
  2. Review the protocols understanding document
  3. Examine test files for usage examples
  4. Check GitHub issues for known problems

Contributing

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/new-feature
  3. Make changes and add tests
  4. Run npm test and npm run lint
  5. Commit changes: git commit -m 'Add new feature'
  6. Push to branch: git push origin feature/new-feature
  7. Submit a pull request

License

MIT License - see LICENSE file for details.

Contact

For questions or support, please open an issue on GitHub.

Related MCP Servers

  • A
    security
    A
    license
    A
    quality
    A Model Context Protocol server that provides LLM Agents with a comprehensive toolset for IP geolocation, network diagnostics, system monitoring, cryptographic operations, and QR code generation.
    Last updated -
    16
    3
    4
    TypeScript
    Apache 2.0
  • -
    security
    A
    license
    -
    quality
    A Model Context Protocol Server that enables LLMs to interact with and execute REST API calls through natural language prompts, supporting GET/PUT/POST/PATCH operations on configured APIs.
    Last updated -
    5
    Python
    Apache 2.0
  • -
    security
    F
    license
    -
    quality
    A Model Context Protocol server that enables LLMs to interact with GraphQL APIs by providing schema introspection and query execution capabilities.
    Last updated -
    9
    TypeScript
    • Apple
    • Linux
  • -
    security
    -
    license
    -
    quality
    A Model Context Protocol server that enables AI agents to dynamically interact with Hasura GraphQL endpoints through natural language, supporting schema discovery, data querying/manipulation, and aggregations.
    Last updated -
    1
    TypeScript

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/belaymit/mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server