Skip to main content
Glama
apolosan

Design Patterns MCP Server

by apolosan
correlation-analysis-bigdata.json4.23 kB
{ "id": "correlation-analysis-bigdata", "name": "Correlation Analysis for Big Data", "category": "Big Data Analysis", "description": "Analyzes relationships between variables in large datasets to identify patterns, dependencies, and predictive relationships", "when_to_use": "Feature selection\nRisk assessment\nPortfolio analysis\nCausal inference studies\nPredictive modeling", "benefits": "Identifies variable relationships\nSupports feature engineering\nHelps understand data structure\nFoundation for causal analysis", "drawbacks": "Correlation ≠ causation\nSensitive to outliers\nMay miss nonlinear relationships\nRequires careful interpretation", "use_cases": "Financial market analysis\nHealthcare outcome prediction\nClimate pattern analysis\nCustomer behavior modeling\nSupply chain optimization", "complexity": "Medium", "tags": [ "big-data", "correlation", "statistical-analysis", "feature-selection", "relationship-discovery" ], "examples": { "python": { "language": "python", "code": "import pandas as pd\nimport numpy as np\nimport seaborn as sns\nimport matplotlib.pyplot as plt\nfrom scipy.stats import pearsonr, spearmanr\n\ndef correlation_analysis_bigdata(data, method='pearson', threshold=0.5):\n \"\"\"\n Perform correlation analysis on big data\n \n Parameters:\n - data: DataFrame with numerical columns\n - method: 'pearson', 'spearman', or 'kendall'\n - threshold: correlation strength threshold\n \"\"\"\n \n # Compute correlation matrix\n if method == 'pearson':\n corr_matrix = data.corr(method='pearson')\n elif method == 'spearman':\n corr_matrix = data.corr(method='spearman')\n else:\n corr_matrix = data.corr(method='kendall')\n \n # Find highly correlated pairs\n high_corr_pairs = []\n for i in range(len(corr_matrix.columns)):\n for j in range(i+1, len(corr_matrix.columns)):\n corr_value = corr_matrix.iloc[i, j]\n if abs(corr_value) > threshold:\n high_corr_pairs.append({\n 'var1': corr_matrix.columns[i],\n 'var2': corr_matrix.columns[j],\n 'correlation': corr_value,\n 'strength': 'strong' if abs(corr_value) > 0.8 else 'moderate'\n })\n \n # Create correlation heatmap\n plt.figure(figsize=(10, 8))\n sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', center=0,\n square=True, linewidths=0.5)\n plt.title(f'{method.capitalize()} Correlation Matrix')\n plt.tight_layout()\n plt.show()\n \n return {\n 'correlation_matrix': corr_matrix,\n 'high_correlations': high_corr_pairs,\n 'method': method,\n 'threshold': threshold,\n 'summary': {\n 'total_pairs': len(high_corr_pairs),\n 'strong_correlations': len([p for p in high_corr_pairs if p['strength'] == 'strong']),\n 'avg_correlation': np.mean([abs(p['correlation']) for p in high_corr_pairs]) if high_corr_pairs else 0\n }\n }\n\n# Example usage\n# Generate sample financial data\nnp.random.seed(42)\ndata = pd.DataFrame({\n 'stock_A': np.random.randn(1000),\n 'stock_B': np.random.randn(1000) * 0.8 + np.random.randn(1000) * 0.2,\n 'interest_rate': np.random.randn(1000),\n 'inflation': np.random.randn(1000),\n 'GDP_growth': np.random.randn(1000)\n})\n\n# Add some correlations\n# Make stock_B correlated with stock_A\ndata['stock_B'] = data['stock_A'] * 0.6 + data['stock_B'] * 0.4\n# Make GDP_growth correlated with interest_rate\ndata['GDP_growth'] = data['interest_rate'] * -0.4 + data['GDP_growth'] * 0.6\n\n# Perform correlation analysis\nresult = correlation_analysis_bigdata(data, method='pearson', threshold=0.3)\n\nprint(f\"Found {result['summary']['total_pairs']} highly correlated pairs\")\nprint(f\"Strong correlations: {result['summary']['strong_correlations']}\")\nprint(\"\\nTop correlations:\")\nfor pair in sorted(result['high_correlations'], key=lambda x: abs(x['correlation']), reverse=True)[:3]:\n print(f\"{pair['var1']} ↔ {pair['var2']}: {pair['correlation']:.3f} ({pair['strength']})\")" } } }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/apolosan/design_patterns_mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server