Skip to main content
Glama
apolosan

Design Patterns MCP Server

by apolosan
attention-mechanism.json2.3 kB
{ "id": "attention-mechanism", "name": "Attention Mechanism", "category": "AI/ML", "description": "Focuses on relevant parts of input when making predictions", "when_to_use": "Sequence modeling\nVariable input lengths\nRelevance weighting", "benefits": "Improved performance\nInterpretability\nVariable lengths\nParallelization", "drawbacks": "Computational overhead\nMemory requirements\nAttention collapse", "use_cases": "Machine translation\nText summarization\nImage captioning", "complexity": "High", "tags": [ "attention", "focus", "weighting" ], "examples": { "python": { "language": "python", "code": "# Attention: focus on relevant parts of input\n\nimport torch\nimport torch.nn as nn\n\nclass AttentionLayer(nn.Module):\n def __init__(self, hidden_size):\n super().__init__()\n self.attention = nn.Linear(hidden_size, 1)\n \n def forward(self, encoder_outputs):\n # encoder_outputs shape: (batch, seq_len, hidden_size)\n \n # Calculate attention scores\n scores = self.attention(encoder_outputs) # (batch, seq_len, 1)\n weights = torch.softmax(scores, dim=1) # normalize\n \n # Apply attention weights\n context = torch.sum(weights * encoder_outputs, dim=1)\n \n return context, weights\n\n# Usage in sequence model\nclass AttentionSeq2Seq(nn.Module):\n def __init__(self, vocab_size, hidden_size):\n super().__init__()\n self.embedding = nn.Embedding(vocab_size, hidden_size)\n self.encoder = nn.LSTM(hidden_size, hidden_size, batch_first=True)\n self.attention = AttentionLayer(hidden_size)\n self.decoder = nn.Linear(hidden_size, vocab_size)\n \n def forward(self, input_ids):\n # Encode\n embedded = self.embedding(input_ids)\n encoder_out, _ = self.encoder(embedded)\n \n # Attend to relevant parts\n context, attn_weights = self.attention(encoder_out)\n \n # Decode\n output = self.decoder(context)\n return output, attn_weights\n\n# Example: attention focuses on \"Paris\" when translating \"capital of France\"\nmodel = AttentionSeq2Seq(vocab_size=10000, hidden_size=256)\noutput, attention = model(input_ids)" } } }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/apolosan/design_patterns_mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server