Skip to main content
Glama

DeepView MCP

README.md4.73 kB
[![MseeP.ai Security Assessment Badge](https://mseep.net/pr/ai-1st-deepview-mcp-badge.png)](https://mseep.ai/app/ai-1st-deepview-mcp) # DeepView MCP DeepView MCP is a Model Context Protocol server that enables IDEs like Cursor and Windsurf to analyze large codebases using Gemini's extensive context window. [![PyPI version](https://badge.fury.io/py/deepview-mcp.svg)](https://badge.fury.io/py/deepview-mcp) [![smithery badge](https://smithery.ai/badge/@ai-1st/deepview-mcp)](https://smithery.ai/server/@ai-1st/deepview-mcp) ## Features - Load an entire codebase from a single text file (e.g., created with tools like repomix) - Query the codebase using Gemini's large context window - Connect to IDEs that support the MCP protocol, like Cursor and Windsurf - Configurable Gemini model selection via command-line arguments ## Prerequisites - Python 3.13+ - Gemini API key from [Google AI Studio](https://aistudio.google.com/) ## Installation ### Installing via Smithery To install DeepView for Claude Desktop automatically via [Smithery](https://smithery.ai/server/@ai-1st/deepview-mcp): ```bash npx -y @smithery/cli install @ai-1st/deepview-mcp --client claude ``` ### Using pip ```bash pip install deepview-mcp ``` ## Usage ### Starting the Server Note: you don't need to start the server manually. These parameters are configured in your MCP setup in your IDE (see below). ```bash # Basic usage with default settings deepview-mcp [path/to/codebase.txt] # Specify a different Gemini model deepview-mcp [path/to/codebase.txt] --model gemini-2.0-pro # Change log level deepview-mcp [path/to/codebase.txt] --log-level DEBUG ``` The codebase file parameter is optional. If not provided, you'll need to specify it when making queries. ### Command-line Options - `--model MODEL`: Specify the Gemini model to use (default: gemini-2.0-flash-lite) - `--log-level {DEBUG,INFO,WARNING,ERROR,CRITICAL}`: Set the logging level (default: INFO) ### Using with an IDE (Cursor/Windsurf/...) 1. Open IDE settings 2. Navigate to the MCP configuration 3. Add a new MCP server with the following configuration: ```json { "mcpServers": { "deepview": { "command": "/path/to/deepview-mcp", "args": [], "env": { "GEMINI_API_KEY": "your_gemini_api_key" } } } } Setting a codebase file is optional. If you are working with the same codebase, you can set the default codebase file using the following configuration: ```json { "mcpServers": { "deepview": { "command": "/path/to/deepview-mcp", "args": ["/path/to/codebase.txt"], "env": { "GEMINI_API_KEY": "your_gemini_api_key" } } } } ``` Here's how to specify the Gemini version to use: ```json { "mcpServers": { "deepview": { "command": "/path/to/deepview-mcp", "args": ["--model", "gemini-2.5-pro-exp-03-25"], "env": { "GEMINI_API_KEY": "your_gemini_api_key" } } } } ``` 4. Reload MCP servers configuration ### Available Tools The server provides one tool: 1. `deepview`: Ask a question about the codebase - Required parameter: `question` - The question to ask about the codebase - Optional parameter: `codebase_file` - Path to a codebase file to load before querying ## Preparing Your Codebase DeepView MCP requires a single file containing your entire codebase. You can use [repomix](https://github.com/yamadashy/repomix) to prepare your codebase in an AI-friendly format. ### Using repomix 1. **Basic Usage**: Run repomix in your project directory to create a default output file: ```bash # Make sure you're using Node.js 18.17.0 or higher npx repomix ``` This will generate a `repomix-output.xml` file containing your codebase. 2. **Custom Configuration**: Create a configuration file to customize which files get packaged and the output format: ```bash npx repomix --init ``` This creates a `repomix.config.json` file that you can edit to: - Include/exclude specific files or directories - Change the output format (XML, JSON, TXT) - Set the output filename - Configure other packaging options ### Example repomix Configuration Here's an example `repomix.config.json` file: ```json { "include": [ "**/*.py", "**/*.js", "**/*.ts", "**/*.jsx", "**/*.tsx" ], "exclude": [ "node_modules/**", "venv/**", "**/__pycache__/**", "**/test/**" ], "output": { "format": "xml", "filename": "my-codebase.xml" } } ``` For more information on repomix, visit the [repomix GitHub repository](https://github.com/yamadashy/repomix). ## License MIT ## Author Dmitry Degtyarev (ddegtyarev@gmail.com)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ai-1st/deepview-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server