Fitbit MCP Connector for AI
Connect AI assistants to your Fitbit health data
Give your AI assistant access to your Fitbit data for personalized health insights, trend analysis, and automated tracking. Works with Claude Desktop and other MCP-compatible AI tools.
What it does
🏃 Exercise & Activities - Get detailed workout logs and activity data
😴 Sleep Analysis - Retrieve sleep patterns and quality metrics
⚖️ Weight Tracking - Access weight trends over time
❤️ Heart Rate Data - Monitor heart rate patterns and zones
🍎 Nutrition Logs - Review food intake, calories, and macros
👤 Profile Info - Access basic Fitbit profile details
Ask your AI things like: "Show me my sleep patterns this week" or "What's my average heart rate during workouts?"
Quick Start
🚀 Want to test the tools right away?
Option 1: Install from npm (Recommended)
- Get Fitbit API credentials
- Create an app with OAuth 2.0 Application Type:
Personal
- Set Callback URL:
http://localhost:3000/callback
- Note your Client ID and Client Secret
- Create an app with OAuth 2.0 Application Type:
- Install the package globally:
- Add to your Claude Desktop config file:
- Config file location:
- Windows: %AppData%\Claude\claude_desktop_config.json
- macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
- Linux: ~/.config/Claude/claude_desktop_config.json
- Restart Claude Desktop and ask about your Fitbit data!
Option 2: Development Setup
- Get Fitbit API credentials (see Installation below)
- Then run:
Both options open the MCP Inspector at http://localhost:5173
where you can test all tools interactively and handle the OAuth flow.
Installation
For End Users (npm package)
- Get Fitbit API credentials at dev.fitbit.com
- Set OAuth 2.0 Application Type to
Personal
- Set Callback URL to
http://localhost:3000/callback
- Set OAuth 2.0 Application Type to
- Install the package:
- Create
.env
file in the package directory:When you runmcp-fitbit
for the first time, it will tell you exactly where to create the.env
file. It will look something like: - Add your credentials to the
.env
file: - Run the server:
For Developers (from source)
- Get Fitbit API credentials at dev.fitbit.com
- Set OAuth 2.0 Application Type to
Personal
- Set Callback URL to
http://localhost:3000/callback
- Set OAuth 2.0 Application Type to
- Clone and setup:
- Create
.env
file: - Build the server:
Available Tools
Tool | Description | Parameters |
---|---|---|
get_weight | Weight data over time periods | period : 1d , 7d , 30d , 3m , 6m , 1y |
get_sleep_by_date_range | Sleep logs for date range (max 100 days) | startDate , endDate (YYYY-MM-DD) |
get_exercises | Activity/exercise logs after date | afterDate (YYYY-MM-DD), limit (1-100) |
get_daily_activity_summary | Daily activity summary with goals | date (YYYY-MM-DD) |
get_activity_goals | User's activity goals (daily/weekly) | period : daily , weekly |
get_activity_timeseries | Activity time series data (max 30 days) | resourcePath , startDate , endDate (YYYY-MM-DD) |
get_azm_timeseries | Active Zone Minutes time series (max 1095 days) | startDate , endDate (YYYY-MM-DD) |
get_heart_rate | Heart rate for time period | period : 1d , 7d , 30d , 1w , 1m , optional date |
get_heart_rate_by_date_range | Heart rate for date range (max 1 year) | startDate , endDate (YYYY-MM-DD) |
get_food_log | Complete nutrition data for a day | date (YYYY-MM-DD or "today") |
get_nutrition | Individual nutrient over time | resource , period , optional date |
get_nutrition_by_date_range | Individual nutrient for date range | resource , startDate , endDate |
get_profile | User profile information | None |
Nutrition resources: caloriesIn
, water
, protein
, carbs
, fat
, fiber
, sodium
Activity time series resources: steps
, distance
, calories
, activityCalories
, caloriesBMR
, tracker/activityCalories
, tracker/calories
, tracker/distance
Claude Desktop
Using npm package (recommended):
Add to claude_desktop_config.json
:
Using local development version:
Add to claude_desktop_config.json
:
Config file locations:
- Windows:
%AppData%\Claude\claude_desktop_config.json
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json
- Linux:
~/.config/Claude/claude_desktop_config.json
First Run Authorization
When you first ask your AI assistant to use Fitbit data:
- The server opens your browser to
http://localhost:3000/auth
- Log in to Fitbit and grant permissions
- You'll be redirected to a success page
- Your AI can now access your Fitbit data!
Development
Architecture: See TASKS.md for improvement opportunities and technical details.
local-only server
The server can only run on the client's local machine because it depends on local resources.
LLM (Claude など) と Fitbit API を橋渡しするモデル コンテキスト プロトコル サーバー。これにより、LLM は定義されたツールを通じてユーザーの健康とフィットネスのデータを要求および取得できるようになります。
Related MCP Servers
- -securityAlicense-qualityA Model Context Protocol server that allows Claude to interact with Linear's API for managing teams, issues, projects, and cycles.Last updated -222TypeScriptMIT License
- -securityAlicense-qualityA Model Context Protocol server that enables Claude to interact with the ConnectWise Manage API to perform operations like retrieving, creating, updating, and deleting tickets, companies, contacts, and other entities.Last updated -JavaScriptMIT License
- -securityAlicense-qualityA Model Context Protocol server that enables LLMs like Claude to interact with SQLite and SQL Server databases, allowing for schema inspection and SQL query execution.Last updated -470152TypeScriptMIT License
- AsecurityAlicenseAqualityA Model Context Protocol server that provides unified access to multiple LLM APIs including ChatGPT, Claude, and DeepSeek, allowing users to call different LLMs from MCP-compatible clients and combine their responses.Last updated -75371TypeScriptMIT License