rag_executeWorkflow_ivsm
Process user questions using the RAG workflow to generate context-based answers. Automates query tokenization, embedding creation, semantic search, and top-k result retrieval using IVSM functions and rag_config.yml settings.
Instructions
Execute complete RAG workflow to answer user questions based on document context.
This function handles the entire RAG pipeline using IVSM functions:
Configuration setup (using configurable values from rag_config.yml)
Store user query (with /rag prefix stripping)
Tokenize query using ivsm.tokenizer_encode
Create embedding view using ivsm.IVSM_score
Convert embeddings to vector columns using ivsm.vector_to_columns
Perform semantic search against chunk embeddings
The function uses configuration values from rag_config.yml with fallback defaults.
Arguments: question - user question to process k - number of top-k results to return (optional, uses config default if not provided
Returns: Returns the top-k most relevant chunks with metadata for context-grounded answer generation.
Input Schema
Name | Required | Description | Default |
---|---|---|---|
k | No | ||
question | Yes |