Skip to main content
Glama

Teradata MCP Server

Official
by Teradata

Server Configuration

Describes the environment variables required to run the server.

NameRequiredDescriptionDefault

No arguments

Schema

Prompts

Interactive templates invoked by user choice

NameDescription
sales_promptmy prompt description
cust_promptExamplemy prompt description
test_fsToolsTest all the fs MCP tools.
test_secToolsTest all the sec MCP tools.
test_evsToolsTest all the evs MCP tools.
test_qltyToolsTest all the qlty MCP tools.
qlty_databaseQualityDatabase data quality assessment.
test_ragToolsTest all the rag MCP tools.
rag_guidelinesGuidelines for Retrieval-Augmented Generation (RAG) mode.
test_baseToolsTest all base tools in the Teradata MCP server.
base_queryHelp users interact with Teradata databases effectively.
base_tableBusinessDescYou are a Teradata DBA who is an expert in describing the business use of tables in a database.
base_databaseBusinessDescYou are a Teradata DBA who is an expert in describing the business use of databases.
test_dbaToolsTest all the DBA MCP tools.
dba_tableArchiveThe following prompt is used to guide the Teradata DBA in finding opportunities for archiving data.
dba_databaseLineageYou are a Teradata DBA who is an expert in finding the lineage of tables in a database.
dba_tableDropImpactYou are a Teradata DBA who is an expert in finding the impact of dropping a table.
dba_databaseHealthAssessmentYou are a Teradata DBA who is an expert in assessing the health of a database.
dba_userActivityAnalysisAnalyze Teradata user activity patterns for the past 7 days
dba_systemVoiceAnalyze Teradata user activity patterns for the past 7 days

Resources

Contextual data attached and managed by the client

NameDescription
get_glossaryList all glossary terms.
get_glossary_definitionsReturns all glossary terms with definitions.

Tools

Functions exposed to the LLM to take actions

NameDescription
sec_rolePermissions

Get permissions for a role.

Arguments: role_name - role name to analyze

Returns: ResponseType: formatted response with query results + metadata

sec_userDbPermissions

Get permissions for a user.

Arguments: user_name - user name to analyze

Returns: ResponseType: formatted response with query results + metadata

sec_userRoles

Get roles assigned to a user.

Arguments: user_name - user name to analyze

Returns: ResponseType: formatted response with query results + metadata

qlty_columnSummary

Get the column summary statistics for a table.

Arguments: db_name - name of the database table_name - table name to analyze

Returns: ResponseType: formatted response with query results + metadata

qlty_distinctCategories

Get the destinct categories from column in a table.

Arguments: db_name - name of the database table_name - table name to analyze col_name - column name to analyze

Returns: ResponseType: formatted response with query results + metadata

qlty_missingValues

Get the column names that having missing values in a table.

Arguments: db_name - name of the database table_name - table name to analyze

Returns: ResponseType: formatted response with query results + metadata

qlty_negativeValues

Get the column names that having negative values in a table.

Arguments: db_name - name of the database table_name - table name to analyze

Returns: ResponseType: formatted response with query results + metadata

qlty_rowsWithMissingValues

Get the rows with missing values in a table.

Arguments: db_name - name of the database table_name - table name to analyze col_name - column name to analyze

Returns: ResponseType: formatted response with query results + metadata

qlty_standardDeviation

Get the standard deviation from column in a table.

Arguments: db_name - name of the database table_name - table name to analyze col_name - column name to analyze

Returns: ResponseType: formatted response with query results + metadata

qlty_univariateStatistics

Get the univariate statistics for a table.

Arguments: db_name - name of the database table_name - table name to analyze col_name - column name to analyze

Returns: ResponseType: formatted response with query results + metadata

base_columnDescription

Shows detailed column information about a database table via SQLAlchemy, bind parameters if provided (prepared SQL), and return the fully rendered SQL (with literals) in metadata.

Arguments: db_name - Database name obj_name - table or view name

Returns: ResponseType: formatted response with query results + metadata

base_readQuery

Execute a SQL query via SQLAlchemy, bind parameters if provided (prepared SQL), and return the fully rendered SQL (with literals) in metadata.

Arguments: sql - SQL text, with optional bind-parameter placeholders

Returns: ResponseType: formatted response with query results + metadata

base_tableAffinity

Get tables commonly used together by database users, this is helpful to infer relationships between tables via SQLAlchemy, bind parameters if provided (prepared SQL), and return the fully rendered SQL (with literals) in metadata.

Arguments: db_name - Database name object_name - table or view name

Returns: ResponseType: formatted response with query results + metadata

base_tableDDL

Displays the DDL definition of a table via SQLAlchemy, bind parameters if provided (prepared SQL), and return the fully rendered SQL (with literals) in metadata.

Arguments: db_name - Database name table_name - table name

Returns: ResponseType: formatted response with query results + metadata

base_tablePreview

This function returns data sample and inferred structure from a database table or view via SQLAlchemy, bind parameters if provided (prepared SQL), and return the fully rendered SQL (with literals) in metadata.

Arguments: table_name - table or view name db_name - Database name

Returns: ResponseType: formatted response with query results + metadata

base_tableUsage

Measure the usage of a table and views by users in a given schema, this is helpful to infer what database objects are most actively used or drive most value via SQLAlchemy, bind parameters if provided (prepared SQL), and return the fully rendered SQL (with literals) in metadata.

Arguments: db_name - Database name

Returns: ResponseType: formatted response with query results + metadata

tmpl_nameOfTool
<description of what the tool is for>

Arguments: arguments - arguments to analyze

Returns: ResponseType: formatted response with query results + metadata

dba_databaseSpace

Get database space if database name is provided, otherwise get all databases space allocations.

Arguments: db_name - database name

Returns: ResponseType: formatted response with query results + metadata

dba_resusageSummary

Get the Teradata system usage summary metrics by weekday and hour for each workload type and query complexity bucket.

Arguments: dimensions - list of dimensions to aggregate the resource usage summary. All dimensions are: ["LogDate", "hourOfDay", "dayOfWeek", "workloadType", "workloadComplexity", "UserName", "AppId", "StatementType"] user_name - user name date - Date to analyze, formatted as YYYY-MM-DD dayOfWeek - day of the week to analyze hourOfDay - hour of day to analyze

dba_tableSpace

Get table space used for a table if table name is provided or get table space for all tables in a database if a database name is provided."

Arguments: db_name - database name table_name - table name

Returns: ResponseType: formatted response with query results + metadata

dba_tableSqlList

Get a list of SQL run against a table in the last number of days.

Arguments: table_name - table name no_days - number of days

Returns: ResponseType: formatted response with query results + metadata

dba_tableUsageImpact

Measure the usage of a table and views by users, this is helpful to understand what user and tables are driving most resource usage at any point in time.

Arguments: db_name - database name to analyze user_name - user name to analyze

dba_userSqlList

Get a list of SQL run by a user in the last number of days if a user name is provided, otherwise get list of all SQL in the last number of days.

Arguments: user_name - user name no_days - number of days

Returns: ResponseType: formatted response with query results + metadata

rag_executeWorkflow

Execute complete RAG workflow to answer user questions based on document context.

This function handles the entire RAG pipeline:

  1. Configuration setup (using configurable values from rag_config.yml)
  2. Store user query (with /rag prefix stripping)
  3. Generate query embeddings (tokenization + embedding)
  4. Perform semantic search against chunk embeddings
  5. Return retrieved context chunks for answer generation

The function uses configuration values from rag_config.yml with fallback defaults.

Arguments: question - user question to process k - number of top-k results to return (optional, uses config default if not provided)

Returns: Returns the top-k most relevant chunks with metadata for context-grounded answer generation.

rag_executeWorkflow_ivsm

Execute complete RAG workflow to answer user questions based on document context.

This function handles the entire RAG pipeline using IVSM functions:

  1. Configuration setup (using configurable values from rag_config.yml)
  2. Store user query (with /rag prefix stripping)
  3. Tokenize query using ivsm.tokenizer_encode
  4. Create embedding view using ivsm.IVSM_score
  5. Convert embeddings to vector columns using ivsm.vector_to_columns
  6. Perform semantic search against chunk embeddings

The function uses configuration values from rag_config.yml with fallback defaults.

Arguments: question - user question to process k - number of top-k results to return (optional, uses config default if not provided

Returns: Returns the top-k most relevant chunks with metadata for context-grounded answer generation.

sales_top_customers

Get the top 20 customers by lifetime value.

sales_customer_profile

Get customer profile and metrics.

get_cube_sales_cube
Tool to query the cube 'order_count'. Get the key sales metrics: USD amount and number of orders. Expected inputs: dimensions (str): Comma-separated dimension names to group by. Allowed values: - customer_key: Key for the customer - sales_year: Year of the sale - sales_month: Month of the sale measures (str): Comma-separated measure names to aggregate (must match cube definition). Allowed values: - gift_amount_usd: Total gift card amount used for the order in USD - total_amount_usd: Total order amount in USD - order_count: Total number of orders Returns: Query result as a formatted response.
cust_activeUsers

Fetch currently active database users

cust_td_serverInfo

Get the Teradata software information: demonstrates how to use parameters for prepared statements.

get_cube_cust_cube_db_space_metrics
Tool to query the cube 'table_skew_pct'. Get the Teradata database space metrics for tables and databases Expected inputs: dimensions (str): Comma-separated dimension names to group by. Allowed values: - DatabaseName: Name of the database - TableName: Name of the table measures (str): Comma-separated measure names to aggregate (must match cube definition). Allowed values: - current_perm: Object perm space in bytes - peak_perm: Object peak perm space in bytes - table_skew_pct: Object skew percentage Returns: Query result as a formatted response.
base_tableList

Lists all tables in a database.

base_databaseList

Lists all databases in the Teradata System.

dba_databaseVersion

Get Teradata database version information.

dba_flowControl

Get the Teradata flow control metrics for a specified date range.

dba_featureUsage

Get the user feature usage metrics for a specified date range.

dba_userDelay

Get the Teradata user delay metrics for a specified date range.

dba_sessionInfo

Get the Teradata session information for user.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Teradata/teradata-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server