Skip to main content
Glama
Teradata

Teradata MCP Server

Official
by Teradata

qlty_negativeValues

Identify columns with negative values in a specified Teradata table to ensure data quality. Input database and table names to receive formatted results with query output and metadata for analysis.

Instructions

Get the column names that having negative values in a table.

Arguments: database_name - name of the database table_name - table name to analyze

Returns: ResponseType: formatted response with query results + metadata

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
database_nameYes
table_nameYes

Implementation Reference

  • The handler function for the 'qlty_negativeValues' tool. It queries the Teradata table using TD_ColumnSummary to identify columns with negative values, formats the results into JSON, adds metadata including the tool name, and returns a structured response.
    def handle_qlty_negativeValues(conn: TeradataConnection, database_name: str | None, table_name: str, *args, **kwargs): """ Get the column names that having negative values in a table. Arguments: database_name - name of the database table_name - table name to analyze Returns: ResponseType: formatted response with query results + metadata """ logger.debug(f"Tool: handle_qlty_negativeValues: Args: table_name: {database_name}.{table_name}") if database_name is not None: table_name = f"{database_name}.{table_name}" with conn.cursor() as cur: rows = cur.execute(f"select ColumnName, NegativeCount from TD_ColumnSummary ( on {table_name} as InputTable using TargetColumns ('[:]')) as dt ORDER BY NegativeCount desc") data = rows_to_json(cur.description, rows.fetchall()) metadata = { "tool_name": "qlty_negativeValues", "database_name": database_name, "table_name": table_name, "rows": len(data) } logger.debug(f"Tool: handle_qlty_negativeValues: Metadata: {metadata}") return create_response(data, metadata)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Teradata/teradata-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server