Skip to main content
Glama
Teradata

Teradata MCP Server

Official
by Teradata

plot_polar_chart

Generate a polar area plot to visualize data relationships between specified labels and columns from Teradata tables for analytical insights.

Instructions

Function to generate a polar area plot for labels and columns. Columns mentioned in labels are used as labels and column is used to plot.

PARAMETERS: table_name: Required Argument. Specifies the name of the table to generate the donut plot. Types: str

labels: Required Argument. Specifies the labels to be used for the line plot. Types: str column: Required Argument. Specifies the column to be used for generating the line plot. Types: str

RETURNS: dict

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
table_nameYes
labelsYes
columnYes

Implementation Reference

  • The core handler function for the 'plot_polar_chart' MCP tool. It validates inputs, queries the specified Teradata table using the provided labels and column, and delegates to get_plot_json_data to generate JSON data formatted for a polar area chart (using Chart.js polarArea type). This is the direct implementation of the tool logic.
    def handle_plot_polar_chart(conn: TeradataConnection, table_name: str, labels: str, column: str): """ Function to generate a polar area plot for labels and columns. Columns mentioned in labels are used as labels and column is used to plot. PARAMETERS: table_name: Required Argument. Specifies the name of the table to generate the donut plot. Types: str labels: Required Argument. Specifies the labels to be used for the line plot. Types: str column: Required Argument. Specifies the column to be used for generating the line plot. Types: str RETURNS: dict """ # Labels must be always a string which represents a column. if not isinstance(labels, str): raise ValueError("labels must be a string representing the column name for x-axis.") return get_plot_json_data(conn, table_name, labels, column, 'polar')

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Teradata/teradata-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server