Skip to main content
Glama
Teradata

Teradata MCP Server

Official
by Teradata

qlty_missingValues

Identify columns with missing values in Teradata tables to assess data quality and ensure completeness for analysis.

Instructions

Get the column names that having missing values in a table.

Arguments: database_name - name of the database table_name - table name to analyze

Returns: ResponseType: formatted response with query results + metadata

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
database_nameYes
table_nameYes

Implementation Reference

  • Handler function that executes a Teradata SQL query using TD_ColumnSummary to retrieve columns with missing values (NullCount and NullPercentage), formats results using helper utilities, and returns a standardized response.
    def handle_qlty_missingValues(conn: TeradataConnection, database_name: str | None, table_name: str, *args, **kwargs): """ Get the column names that having missing values in a table. Arguments: database_name - name of the database table_name - table name to analyze Returns: ResponseType: formatted response with query results + metadata """ logger.debug(f"Tool: handle_qlty_missingValues: Args: table_name: {database_name}.{table_name}") if database_name is not None: table_name = f"{database_name}.{table_name}" with conn.cursor() as cur: rows = cur.execute(f"select ColumnName, NullCount, NullPercentage from TD_ColumnSummary ( on {table_name} as InputTable using TargetColumns ('[:]')) as dt ORDER BY NullCount desc") data = rows_to_json(cur.description, rows.fetchall()) metadata = { "tool_name": "qlty_missingValues", "database_name": database_name, "table_name": table_name, "rows": len(data) } logger.debug(f"Tool: handle_qlty_missingValues: Metadata: {metadata}") return create_response(data, metadata)
  • Dynamic registration loop that discovers handle_qlty_missingValues via module loader, derives tool name 'qlty_missingValues' by stripping 'handle_' prefix, wraps the handler for MCP compatibility (injects conn, adapts signature), and registers it as an MCP tool.
    # Register code tools via module loader module_loader = td.initialize_module_loader(config) if module_loader: all_functions = module_loader.get_all_functions() for name, func in all_functions.items(): if not (inspect.isfunction(func) and name.startswith("handle_")): continue tool_name = name[len("handle_"):] if not any(re.match(p, tool_name) for p in config.get('tool', [])): continue # Skip template tools (used for developer reference only) if tool_name.startswith("tmpl_"): logger.debug(f"Skipping template tool: {tool_name}") continue # Skip BAR tools if BAR functionality is disabled if tool_name.startswith("bar_") and not enableBAR: logger.info(f"Skipping BAR tool: {tool_name} (BAR functionality disabled)") continue # Skip chat completion tools if chat completion functionality is disabled if tool_name.startswith("chat_") and not enableChat: logger.info(f"Skipping chat completion tool: {tool_name} (chat completion functionality disabled)") continue wrapped = make_tool_wrapper(func) mcp.tool(name=tool_name, description=wrapped.__doc__)(wrapped) logger.info(f"Created tool: {tool_name}") logger.debug(f"Tool Docstring: {wrapped.__doc__}") else:
  • Imports utility functions create_response (formats data+metadata into MCP response) and rows_to_json (converts cursor results to JSON). These are used in the handler to process and return results.
    from teradata_mcp_server.tools.utils import create_response, rows_to_json logger = logging.getLogger("teradata_mcp_server") #------------------ Tool ------------------# # Missing Values tool def handle_qlty_missingValues(conn: TeradataConnection, database_name: str | None, table_name: str, *args, **kwargs): """ Get the column names that having missing values in a table. Arguments: database_name - name of the database table_name - table name to analyze Returns: ResponseType: formatted response with query results + metadata """ logger.debug(f"Tool: handle_qlty_missingValues: Args: table_name: {database_name}.{table_name}") if database_name is not None: table_name = f"{database_name}.{table_name}" with conn.cursor() as cur: rows = cur.execute(f"select ColumnName, NullCount, NullPercentage from TD_ColumnSummary ( on {table_name} as InputTable using TargetColumns ('[:]')) as dt ORDER BY NullCount desc") data = rows_to_json(cur.description, rows.fetchall()) metadata = { "tool_name": "qlty_missingValues", "database_name": database_name, "table_name": table_name, "rows": len(data) } logger.debug(f"Tool: handle_qlty_missingValues: Metadata: {metadata}") return create_response(data, metadata)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Teradata/teradata-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server