Skip to main content
Glama
Teradata

Teradata MCP Server

Official
by Teradata

base_tablePreview

Preview data samples and infer table structure from Teradata databases using SQLAlchemy. Provides fully rendered SQL and metadata for analysis and query validation.

Instructions

This function returns data sample and inferred structure from a database table or view via SQLAlchemy, bind parameters if provided (prepared SQL), and return the fully rendered SQL (with literals) in metadata.

Arguments: table_name - table or view name database_name - Database name

Returns: ResponseType: formatted response with query results + metadata

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
database_nameNo
table_nameYes

Implementation Reference

  • Handler function that previews the top 5 rows of a specified table or view, returning sample data and column metadata including name, type, and length.
    def handle_base_tablePreview(conn: TeradataConnection, table_name: str, database_name: str | None = None, *args, **kwargs): """ This function returns data sample and inferred structure from a database table or view via SQLAlchemy, bind parameters if provided (prepared SQL), and return the fully rendered SQL (with literals) in metadata. Arguments: table_name - table or view name database_name - Database name Returns: ResponseType: formatted response with query results + metadata """ logger.debug(f"Tool: handle_base_tablePreview: Args: tablename: {table_name}, databasename: {database_name}") if database_name is not None: table_name = f"{database_name}.{table_name}" with conn.cursor() as cur: cur.execute(f'select top 5 * from {table_name}') columns = cur.description sample = rows_to_json(cur.description, cur.fetchall()) metadata = { "tool_name": "base_tablePreview", "database": database_name, "table_name": table_name, "columns": [ { "name": c[0], "type": c[1].__name__ if hasattr(c[1], '__name__') else str(c[1]), "length": c[3] } for c in columns ], "sample_size": len(sample) } logger.debug(f"Tool: handle_base_tablePreview: metadata: {metadata}") return create_response(sample, metadata)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Teradata/teradata-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server