Skip to main content
Glama

Teradata MCP Server

Official
by Teradata

base_tablePreview

Preview data samples and inferred structure from a Teradata database table or view, generating fully rendered SQL with metadata for analysis.

Instructions

This function returns data sample and inferred structure from a database table or view via SQLAlchemy, bind parameters if provided (prepared SQL), and return the fully rendered SQL (with literals) in metadata.

Arguments: table_name - table or view name db_name - Database name

Returns: ResponseType: formatted response with query results + metadata

Input Schema

NameRequiredDescriptionDefault
db_nameNo
table_nameYes

Input Schema (JSON Schema)

{ "properties": { "db_name": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": null, "title": "Db Name" }, "table_name": { "title": "Table Name", "type": "string" } }, "required": [ "table_name" ], "title": "handle_base_tablePreviewArguments", "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Teradata/teradata-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server