Skip to main content
Glama
placefinder.py2.04 kB
import stargazingplacefinder as spf from typing import Optional, List, Dict, Any from pathlib import Path class StargazingPlaceFinder: def __init__(self, kml_file_path: Optional[Path] = None, images_base_path: Optional[Path] = None, min_height_difference: float = 100.0, road_search_radius_km: float = 10.0, db_config_path: Optional[Path] = None): self.kml_file_path = kml_file_path self.images_base_path = images_base_path self.min_height_difference = min_height_difference self.road_search_radius_km = road_search_radius_km self.db_config_path = db_config_path self.stargazing_analyzer = spf.init_stargazing_analyzer( kml_file_path, images_base_path, min_height_difference, road_search_radius_km, db_config_path) def analyze_area(self, south: float, west: float, north: float, east: float, min_height_diff: float = 100.0, road_radius_km: float = 10.0, max_locations: int = 30, network_type: str = 'drive') -> List[Dict[str, Any]]: self.min_height_difference = min_height_diff self.road_search_radius_km = road_radius_km self.stargazing_analyzer = spf.init_stargazing_analyzer( self.kml_file_path, self.images_base_path, self.min_height_difference, self.road_search_radius_km, self.db_config_path) return self.stargazing_analyzer.analyze_area( bbox=(south, west, north, east), max_locations=max_locations, location_types=None, network_type=network_type, include_light_pollution=True, include_road_connectivity=True, ) def get_light_pollution_grid(north: float, south: float, east: float, west: float, zoom: int = 10) -> Dict[str, Any]: return spf.get_light_pollution_grid(north=north, south=south, east=east, west=west, zoom=zoom)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/StarGazer1995/mcp-stargazing'

If you have feedback or need assistance with the MCP directory API, please join our Discord server