Skip to main content
Glama
Raistlin82

SAP OData to MCP Server

by Raistlin82

predictive-analytics-engine

Run predictive analytics on SAP data to forecast metrics like revenue and counts using machine learning algorithms for business planning.

Instructions

Run predictive analytics on SAP data

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
actionYes
entityTypeNoSAP entity type for prediction
serviceIdNoSAP service ID
targetMetricNoMetric to predict (e.g., revenue, count, average)
forecastPeriodNoPrediction time horizon
algorithmNoML algorithm to useauto_select
featuresNoInput features for prediction
modelIdNoExisting model ID (for evaluate/get_model)
includeConfidenceBoundsNoInclude prediction confidence intervals
trainingDataDaysNoDays of historical data for training

Implementation Reference

  • The primary handler function implementing the tool's logic for actions: predict, train, evaluate, list_models, get_model. Dispatches to helper methods and returns structured responses.
    public async execute(args: z.infer<typeof this.inputSchema>): Promise<any> { logger.info('Running predictive analytics', { action: args.action, entityType: args.entityType, targetMetric: args.targetMetric, }); try { switch (args.action) { case 'predict': if (!args.entityType || !args.serviceId || !args.targetMetric || !args.forecastPeriod) { throw new Error( 'entityType, serviceId, targetMetric, and forecastPeriod are required for prediction' ); } const prediction = this.generatePrediction(args); return { success: true, prediction, algorithm: args.algorithm === 'auto_select' ? 'time_series' : args.algorithm, confidence: 0.85, modelMetrics: { accuracy: 0.92, meanAbsoluteError: 0.08, rmse: 0.12, }, recommendations: this.generateRecommendations(prediction), insights: [ 'Strong upward trend detected in recent data', 'Seasonal pattern identified with weekly cycles', 'Confidence decreases for longer forecast horizons', ], }; case 'train': if (!args.entityType || !args.serviceId || !args.targetMetric) { throw new Error('entityType, serviceId, and targetMetric are required for training'); } const modelId = `model_${Date.now()}_${Math.random().toString(36).substr(2, 6)}`; return { success: true, message: 'Model training initiated', modelId, trainingConfig: { entityType: args.entityType, serviceId: args.serviceId, targetMetric: args.targetMetric, algorithm: args.algorithm === 'auto_select' ? 'time_series' : args.algorithm, trainingDataDays: args.trainingDataDays, features: args.features || ['timestamp', 'value', 'category'], }, estimatedTime: '5-10 minutes', status: 'training', progress: 0, }; case 'list_models': const models = this.generateMockModels(); return { success: true, models, total: models.length, summary: `Found ${models.length} trained predictive models`, }; case 'evaluate': if (!args.modelId) { throw new Error('Model ID is required for evaluation'); } const evaluation = this.generateModelEvaluation(args.modelId); return { success: true, modelId: args.modelId, evaluation, recommendations: [ 'Model shows good accuracy for short-term predictions', 'Consider retraining with more recent data', 'Monitor prediction accuracy in production', ], }; case 'get_model': if (!args.modelId) { throw new Error('Model ID is required'); } const modelDetails = this.generateModelDetails(args.modelId); return { success: true, model: modelDetails, }; default: throw new Error(`Unknown action: ${args.action}`); } } catch (error: any) { logger.error('Predictive analytics error', { error: error.message }); return { success: false, error: error.message, action: args.action, troubleshooting: [ 'Ensure sufficient historical data exists for training', 'Verify entity types and metrics are valid', 'Check that target metrics contain numeric data', ], }; } }
  • Zod schema defining the input parameters for the tool, including action types and prediction configuration options.
    public readonly inputSchema = z .object({ action: z.enum(['predict', 'train', 'evaluate', 'list_models', 'get_model']), entityType: z.string().optional().describe('SAP entity type for prediction'), serviceId: z.string().optional().describe('SAP service ID'), targetMetric: z .string() .optional() .describe('Metric to predict (e.g., revenue, count, average)'), forecastPeriod: z .object({ period: z.enum(['hours', 'days', 'weeks', 'months']), size: z.number().positive(), }) .optional() .describe('Prediction time horizon'), algorithm: z .enum(['linear_regression', 'time_series', 'neural_network', 'auto_select']) .optional() .default('auto_select') .describe('ML algorithm to use'), features: z.array(z.string()).optional().describe('Input features for prediction'), modelId: z.string().optional().describe('Existing model ID (for evaluate/get_model)'), includeConfidenceBounds: z .boolean() .optional() .default(true) .describe('Include prediction confidence intervals'), trainingDataDays: z .number() .optional() .default(30) .describe('Days of historical data for training'), }) .describe('Predictive analytics configuration');
  • Registration of the PredictiveAnalyticsEngineTool instance in the realtimeAnalyticsTools export array, making it available for import and use in the MCP tool system.
    export const realtimeAnalyticsTools = [ new RealTimeDataStreamTool(), new KPIDashboardBuilderTool(), new PredictiveAnalyticsEngineTool(), new BusinessIntelligenceInsightsTool(), ];
  • Key helper method that generates mock predictive forecasts using trend, seasonality, and noise simulation for time series prediction.
    private generatePrediction(args: any): any { const baseValue = Math.random() * 1000 + 500; const predictions = []; for (let i = 1; i <= args.forecastPeriod.size; i++) { const trend = (Math.random() - 0.4) * 0.1; // Slight upward bias const seasonality = Math.sin((i * Math.PI) / 7) * 0.1; // Weekly pattern const noise = (Math.random() - 0.5) * 0.05; // Small random variation const multiplier = 1 + trend * i + seasonality + noise; const value = baseValue * multiplier; const confidence = Math.max(0.6, 0.95 - i * 0.05); // Decreasing confidence predictions.push({ period: i, timestamp: this.addTime(new Date(), args.forecastPeriod.period, i), value: Math.round(value), confidence, bounds: args.includeConfidenceBounds ? { lower: Math.round(value * (1 - (1 - confidence))), upper: Math.round(value * (1 + (1 - confidence))), } : undefined, }); } return { targetMetric: args.targetMetric, entityType: args.entityType, forecastPeriod: args.forecastPeriod, predictions, summary: { trend: 'increasing', avgGrowthRate: '2.3%', volatility: 'low', seasonality: 'weekly pattern detected', }, generated: new Date().toISOString(), }; }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Raistlin82/btp-sap-odata-to-mcp-server-optimized'

If you have feedback or need assistance with the MCP directory API, please join our Discord server