Skip to main content
Glama
Raistlin82

SAP OData to MCP Server

by Raistlin82

business-process-insights

Analyze SAP transactional data to identify workflow inefficiencies and automation opportunities using AI pattern recognition for business processes.

Instructions

Extract business process insights from SAP transactional data using AI pattern recognition. Identifies workflow inefficiencies and automation opportunities.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
focusAreasNoSpecific areas to focus the analysis on
processDataYesHistorical process execution data
processTypeYesType of business process to analyze
timeframeNoAnalysis timeframe

Implementation Reference

  • The execute method of BusinessProcessInsightsTool that analyzes SAP business processes using AI to identify bottlenecks and opportunities. It uses aiIntegration.generateBusinessInsights and processes the results into analysis and recommendations.
    async execute(params: any): Promise<any> { try { logger.info('Analyzing business process', { processType: params.processType, dataPoints: params.processData.length, timeframe: params.timeframe, }); const prompt = this.buildProcessAnalysisPrompt(params); const insights = await aiIntegration.generateBusinessInsights( params.processData, `${params.processType}Process`, prompt ); const processAnalysis = { summary: `Analysis of ${params.processType} process over ${params.timeframe || 'specified period'}`, keyMetrics: this.extractKeyMetrics(params.processData, params.processType), bottlenecks: insights .filter((i: any) => i.type === 'risk') .map((i: any) => i.title) .slice(0, 5), optimizationOpportunities: insights .filter((i: any) => i.type === 'trend') .map((i: any) => `Optimize ${i.title}`) .slice(0, 5), riskAreas: insights .filter((i: any) => i.type === 'risk') .map((i: any) => i.description) .slice(0, 3), }; const recommendations = insights.map((insight: any) => ({ title: insight.title, description: insight.description, priority: insight.impact, estimatedImpact: `${insight.impact} business impact`, implementationEffort: 'Medium effort required', })); return { success: true, processAnalysis, recommendations, }; } catch (error) { const errorMessage = error instanceof Error ? error.message : 'Unknown error'; logger.error('Business process analysis failed', { error: errorMessage }); return { success: false, error: errorMessage, }; }
  • Input schema for the business-process-insights tool defining parameters like processType, processData, timeframe, and focusAreas.
    inputSchema = { type: 'object' as const, properties: { processType: { type: 'string' as const, enum: ['procurement', 'sales', 'finance', 'inventory', 'hr', 'general'] as const, description: 'Type of business process to analyze', }, processData: { type: 'array' as const, items: { type: 'object' as const }, description: 'Historical process execution data', }, timeframe: { type: 'string' as const, description: 'Analysis timeframe (e.g., "last 30 days", "Q3 2024")', }, focusAreas: { type: 'array' as const, items: { type: 'string' as const, enum: ['efficiency', 'costs', 'compliance', 'quality', 'speed'] as const, }, description: 'Specific areas to focus the analysis on', }, }, required: ['processType', 'processData'], };
  • The BusinessProcessInsightsTool instance is included in the aiEnhancedTools export array, likely used for batch registration in the MCP server.
    export const aiEnhancedTools = [ new NaturalQueryBuilderTool(), new SmartDataAnalysisTool(), new QueryPerformanceOptimizerTool(), new BusinessProcessInsightsTool(), ];
  • Helper method to build the AI prompt for process analysis.
    private buildProcessAnalysisPrompt(params: any): string { return `Analyze ${params.processType} business process data for insights: Data points: ${params.processData.length} Timeframe: ${params.timeframe || 'Not specified'} Focus areas: ${params.focusAreas?.join(', ') || 'General analysis'} Identify bottlenecks, inefficiencies, and optimization opportunities.`; }
  • Helper method to extract key metrics from process data (placeholder implementation).
    private extractKeyMetrics(data: any[], processType: string): Record<string, any> { return { totalRecords: data.length, averageProcessingTime: 0, completionRate: 0, }; }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Raistlin82/btp-sap-odata-to-mcp-server-optimized'

If you have feedback or need assistance with the MCP directory API, please join our Discord server