Skip to main content
Glama
Raistlin82

SAP OData to MCP Server

by Raistlin82

business-process-insights

Analyze SAP transactional data to identify workflow inefficiencies and automation opportunities using AI pattern recognition for business processes.

Instructions

Extract business process insights from SAP transactional data using AI pattern recognition. Identifies workflow inefficiencies and automation opportunities.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
processTypeYesType of business process to analyze
processDataYesHistorical process execution data
timeframeNoAnalysis timeframe
focusAreasNoSpecific areas to focus the analysis on

Implementation Reference

  • The main execute method of BusinessProcessInsightsTool that takes process data, uses AI to generate insights, extracts metrics, identifies bottlenecks and opportunities, and returns analysis with recommendations.
    async execute(params: any): Promise<any> { try { logger.info('Analyzing business process', { processType: params.processType, dataPoints: params.processData.length, timeframe: params.timeframe, }); const prompt = this.buildProcessAnalysisPrompt(params); const insights = await aiIntegration.generateBusinessInsights( params.processData, `${params.processType}Process`, prompt ); const processAnalysis = { summary: `Analysis of ${params.processType} process over ${params.timeframe || 'specified period'}`, keyMetrics: this.extractKeyMetrics(params.processData, params.processType), bottlenecks: insights .filter((i: any) => i.type === 'risk') .map((i: any) => i.title) .slice(0, 5), optimizationOpportunities: insights .filter((i: any) => i.type === 'trend') .map((i: any) => `Optimize ${i.title}`) .slice(0, 5), riskAreas: insights .filter((i: any) => i.type === 'risk') .map((i: any) => i.description) .slice(0, 3), }; const recommendations = insights.map((insight: any) => ({ title: insight.title, description: insight.description, priority: insight.impact, estimatedImpact: `${insight.impact} business impact`, implementationEffort: 'Medium effort required', })); return { success: true, processAnalysis, recommendations, }; } catch (error) { const errorMessage = error instanceof Error ? error.message : 'Unknown error'; logger.error('Business process analysis failed', { error: errorMessage }); return { success: false, error: errorMessage, }; }
  • Input schema defining the parameters for the business process insights tool: processType (enum), processData (array of objects), optional timeframe and focusAreas.
    inputSchema = { type: 'object' as const, properties: { processType: { type: 'string' as const, enum: ['procurement', 'sales', 'finance', 'inventory', 'hr', 'general'] as const, description: 'Type of business process to analyze', }, processData: { type: 'array' as const, items: { type: 'object' as const }, description: 'Historical process execution data', }, timeframe: { type: 'string' as const, description: 'Analysis timeframe (e.g., "last 30 days", "Q3 2024")', }, focusAreas: { type: 'array' as const, items: { type: 'string' as const, enum: ['efficiency', 'costs', 'compliance', 'quality', 'speed'] as const, }, description: 'Specific areas to focus the analysis on', }, }, required: ['processType', 'processData'], };
  • Registration of the BusinessProcessInsightsTool instance in the aiEnhancedTools array, which is likely used for tool discovery and registration in the MCP server.
    export const aiEnhancedTools = [ new NaturalQueryBuilderTool(), new SmartDataAnalysisTool(), new QueryPerformanceOptimizerTool(), new BusinessProcessInsightsTool(), ];
  • Helper methods: buildProcessAnalysisPrompt generates the AI prompt for analysis, extractKeyMetrics computes basic metrics from process data (currently stubbed).
    private buildProcessAnalysisPrompt(params: any): string { return `Analyze ${params.processType} business process data for insights: Data points: ${params.processData.length} Timeframe: ${params.timeframe || 'Not specified'} Focus areas: ${params.focusAreas?.join(', ') || 'General analysis'} Identify bottlenecks, inefficiencies, and optimization opportunities.`; } private extractKeyMetrics(data: any[], processType: string): Record<string, any> { return { totalRecords: data.length, averageProcessingTime: 0, completionRate: 0, }; }
  • Class declaration with tool name and description, implementing the MCP Tool interface.
    export class BusinessProcessInsightsTool implements Tool { [key: string]: unknown; name = 'business-process-insights'; description = 'Analyze SAP business processes to identify bottlenecks, inefficiencies, and optimization opportunities using AI.';

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Raistlin82/btp-sap-odata-to-mcp-server-optimized'

If you have feedback or need assistance with the MCP directory API, please join our Discord server