Skip to main content
Glama
Raistlin82

SAP OData to MCP Server

by Raistlin82

business-intelligence-insights

Generate business insights from SAP data to identify trends, anomalies, and optimization opportunities using comprehensive analysis.

Instructions

Generate business insights from SAP data

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
actionYes
entityTypesNoSAP entity types to analyze
serviceIdsNoSAP service IDs to include
analysisTypeNoType of analysis to performcomprehensive
timeWindowNoTime window for analysis
insightIdNoSpecific insight ID (for get action)
minConfidenceNoMinimum confidence threshold for insights
includeRecommendationsNoInclude actionable recommendations
exportFormatNoExport format (for export action)json

Implementation Reference

  • Main handler function that processes input arguments and dispatches to specific actions (generate, list, get, configure, export) for business intelligence insights, using RealtimeAnalyticsService and generating mock insights.
    public async execute(args: z.infer<typeof this.inputSchema>): Promise<any> { logger.info('Generating business intelligence insights', { action: args.action, analysisType: args.analysisType, }); const service = getRealtimeService(); try { switch (args.action) { case 'generate': const insights = this.generateBusinessInsights(args); return { success: true, insights, analysis: { type: args.analysisType, timeWindow: args.timeWindow, entityTypes: args.entityTypes || ['SalesOrder', 'Product', 'Customer'], confidence: 0.85, dataPoints: Math.floor(Math.random() * 10000) + 5000, }, summary: { totalInsights: insights.length, highPriority: insights.filter(i => i.severity === 'critical' || i.severity === 'high') .length, categories: this.categorizeInsights(insights), generatedAt: new Date().toISOString(), }, recommendations: this.generateGlobalRecommendations(insights), }; case 'list': const existingInsights = service.getInsights(); return { success: true, insights: existingInsights.map(insight => ({ insightId: insight.insightId, title: insight.title, type: insight.type, severity: insight.severity, confidence: insight.confidence, generated: insight.generated, expires: insight.expires, })), total: existingInsights.length, active: existingInsights.filter(i => !i.expires || i.expires > new Date()).length, }; case 'get': if (!args.insightId) { throw new Error('Insight ID is required for get action'); } const insight = service.getInsights().find(i => i.insightId === args.insightId); if (!insight) { return { success: false, error: 'Insight not found', insightId: args.insightId, }; } return { success: true, insight: { ...insight, relatedInsights: this.findRelatedInsights(insight, service.getInsights()), actionsPlan: this.generateActionPlan(insight), }, }; case 'configure': const configuration = this.generateInsightConfiguration(args); return { success: true, message: 'Business intelligence engine configured', configuration, status: 'active', }; case 'export': const exportData = this.generateExportData(service.getInsights(), args.exportFormat!); return { success: true, export: exportData, format: args.exportFormat, recordCount: service.getInsights().length, generatedAt: new Date().toISOString(), }; default: throw new Error(`Unknown action: ${args.action}`); } } catch (error: any) { logger.error('Business intelligence error', { error: error.message }); return { success: false, error: error.message, action: args.action, troubleshooting: [ 'Ensure sufficient historical data exists for analysis', 'Verify entity types and service IDs are accessible', 'Check minimum confidence threshold settings', ], }; } }
  • Zod input schema defining parameters for the tool, including action, entityTypes, serviceIds, analysisType, timeWindow, etc.
    public readonly inputSchema = z .object({ action: z.enum(['generate', 'list', 'get', 'configure', 'export']), entityTypes: z.array(z.string()).optional().describe('SAP entity types to analyze'), serviceIds: z.array(z.string()).optional().describe('SAP service IDs to include'), analysisType: z .enum(['trend', 'anomaly', 'correlation', 'optimization', 'comprehensive']) .optional() .default('comprehensive') .describe('Type of analysis to perform'), timeWindow: z .object({ period: z.enum(['hours', 'days', 'weeks', 'months']), size: z.number().positive(), }) .optional() .default({ period: 'days', size: 7 }) .describe('Time window for analysis'), insightId: z.string().optional().describe('Specific insight ID (for get action)'), minConfidence: z .number() .min(0) .max(1) .optional() .default(0.7) .describe('Minimum confidence threshold for insights'), includeRecommendations: z .boolean() .optional() .default(true) .describe('Include actionable recommendations'), exportFormat: z .enum(['json', 'csv', 'pdf']) .optional() .default('json') .describe('Export format (for export action)'), }) .describe('Business intelligence insights configuration');
  • Registration of the BusinessIntelligenceInsightsTool instance in the realtimeAnalyticsTools array, which is likely imported and registered with the MCP server elsewhere.
    export const realtimeAnalyticsTools = [ new RealTimeDataStreamTool(), new KPIDashboardBuilderTool(), new PredictiveAnalyticsEngineTool(), new BusinessIntelligenceInsightsTool(), ];
  • Key helper method that generates the actual business insights (trend, anomaly, correlation, optimization) based on input parameters.
    private generateBusinessInsights(args: any): any[] { const insights = []; const analysisTypes = args.analysisType === 'comprehensive' ? ['trend', 'anomaly', 'correlation', 'optimization'] : [args.analysisType]; for (const type of analysisTypes) { switch (type) { case 'trend': insights.push(...this.generateTrendInsights()); break; case 'anomaly': insights.push(...this.generateAnomalyInsights()); break; case 'correlation': insights.push(...this.generateCorrelationInsights()); break; case 'optimization': insights.push(...this.generateOptimizationInsights()); break; } } // Filter by confidence threshold return insights.filter(insight => insight.confidence >= args.minConfidence); }
  • Tool metadata: name and description definition.
    public readonly name = 'business-intelligence-insights'; public readonly description = 'Generate business insights from SAP data'; public readonly inputSchema = z .object({ action: z.enum(['generate', 'list', 'get', 'configure', 'export']), entityTypes: z.array(z.string()).optional().describe('SAP entity types to analyze'), serviceIds: z.array(z.string()).optional().describe('SAP service IDs to include'), analysisType: z .enum(['trend', 'anomaly', 'correlation', 'optimization', 'comprehensive']) .optional() .default('comprehensive') .describe('Type of analysis to perform'), timeWindow: z .object({ period: z.enum(['hours', 'days', 'weeks', 'months']), size: z.number().positive(), }) .optional() .default({ period: 'days', size: 7 }) .describe('Time window for analysis'), insightId: z.string().optional().describe('Specific insight ID (for get action)'), minConfidence: z .number() .min(0) .max(1) .optional() .default(0.7) .describe('Minimum confidence threshold for insights'), includeRecommendations: z .boolean() .optional() .default(true) .describe('Include actionable recommendations'), exportFormat: z .enum(['json', 'csv', 'pdf']) .optional() .default('json') .describe('Export format (for export action)'), }) .describe('Business intelligence insights configuration');

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Raistlin82/btp-sap-odata-to-mcp-server-optimized'

If you have feedback or need assistance with the MCP directory API, please join our Discord server